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We present a study of the spatially determined chaos in the model of processes occurring in a 
nonlinear ring interferometer operated in the static mode. Discrete mapping is used as applied to the 
cases of single- and double-frequency optical radiation. The fractal dimension D0 serves a 
quantitative characteristic of the spatially determined chaos. The families of fractal dimension maps 
of an attractor in the models are constructed based on discrete mapping under various conditions. 

 

In recent years, investigators have actively been 
searching for principles and the element base of 
nonlinear-optical tools for information processing. In 
particular, the possibilities of information protection 
using the dynamic and spatially deterministic chaos 
are discussed.1,2 Thus, the development of facilities 
for hidden information transfer in the radio region 
assumes the mode of chaotic oscillations in an 
encryption device.3 Chaotic oscillations (modes) 
usually correspond to strange (that is, fractal) 
attractors. 

In solving the problem of information protection 
and processing in the optical wavelength region, the 
nonlinear ring interferometer (NRI) is one of the 
possible prototypes of an encryptor.2,4 This 
interferometer is a type of an open ring dynamic 
system, the optical radiation propagates through. The 
NRI feedback loop can perform various large-scale 
transformations of the optical field (focusing of a laser 
beam, shift and/or turn of the beam in the cross-
section plane). Therefore, NRI is capable of generating 
regular or chaotic spatiotemporal structures in the cross 
section of a light beam. However, the processes in the 
NRI model have not still been studied from the 
viewpoint of estimating the dimension of its attractor 
as applied to analysis of modes, bifurcations, and 
NRI suitability for information processing. 

 

Interferometer structure and 
mathematical model of the processes 

in the NRI 
 

The optical arrangement of an NRI is shown in 
Fig. 1, where Ein and Eout are the fields at the NRI 
input and output; NM is the nonlinear medium (for 
example, liquid crystal) with the length L; G is the 
element of large-scale transformation of the light 
field (field expansion, shift, or turn); M1, M2, M3, 
Ì4 are mirrors (M1 and M2 are semitransparent 
mirrors with the intensity reflection coefficient R). 

For M3 and M4 the reflection coefficient is equal to 
unity. 

 
 a b 
Fig. 1. Ray path in the NRI as the light field turns by 
∆ = 120° in the plane xOy: (à) trajectories of rays 1, 2, 3 

closing upon three passages around NRI; (b) projection of the 
trajectories of rays 1, 2, 3 onto the xOy plane. 

 
Let the radiation at the NRI input be a sum of 

two quasimonochromatic fields with the amplitudes 
a(r, t), b(r, t) and the frequencies ω ± Ω having 
circular polarization of different (at ω > Ω) or 
identical (at ω < Ω) signs: 

 Ex(r,t) = a(r,t) cos [(ω + Ω) t + ϕ(r,t) + ψ(r,t)] + 

 + b(r,t) cos [(ω – Ω) t + ϕ(r,t) – ψ(r,t)], 

 Ey(r,t) = a(r,t) sin [(ω + Ω) t + ϕ(r,t) + ψ(r,t)] – 

 – b(r,t) sin [(ω – Ω) t + ϕ(r,t) – ψ(r,t)], 

where ω (or Ω at ω < Ω) has the meaning of the mean 
frequency, and 2Ω (2ω at ω < Ω) is the frequency 
difference between the field components. To reflect the 
specifics of the considered optical field, we operate 
with the parameter of bichromaticity q ≡ Ω/ω (Ref. 5).  
 Neglecting the diffusion of molecules in the 
nonlinear medium, from the model proposed in 
Ref. 5, we can obtain the description of the dynamics 
of the nonlinear phase progression U in the NRI 
nonlinear medium in the point approximation. The 
term "point approximation" means that, depending 
on the type of the large-scale transformation of the 
field by the element G in the feedback loop, the 
whole set of points belonging to the cross section of 



A.V. Lyachin and B.N. Poizner Vol. 17,  Nos. 2–3 /February—March  2004/ Atmos. Oceanic Opt.   127 
 

the laser beam in the NRI is divided into the infinite 
number of mutually independent (in the sense of the 
absence of physical interaction between the fields and 
nonlinear phase progression) subsets. But these 
subsets are essentially the chains of points, at which 
the light fields and the nonlinear phase progression 
successively interact (Fig. 1b). 

In other words, the ray, propagating through the 
nonlinear medium and the feedback loop of NRI, at the 
point i (for example, i = 1, 2, 3 in Fig. 1b) acquires 
the phase progression Ui and experiences the delay tei. 
Due to the element G, the ray comes at the point i+1. 
Here, in the sum with one of the NRI input rays, it, 
according to the model from Ref. 5, affects the rate 
of variation of the nonlinear phase progression Ui+1. 
Note that since the ray paths in Fig. 1 are closed, the 
index i + 1 = 4 must be equal to the index i + 1 = 1. 
Thus, the phase progression Ui at the point i affects 
the phase progression Ui+1 at the point i + 1. Finally, 
the ray trajectory becomes closed upon m passages 
around NRI. From here on, according to the accepted 
method of enumeration, i + 1 denotes the operation 
[(i + 1) mod m] + 1, where (i + 1) mod m designates 
the residue of division of i + 1 by m. Physically, this 
means that the ray from the mth point comes to the 
first one. 

Thus, in the point approximation, from the 
general equations5 we obtain the system of ordinary 
differential equations (ODEs): 

 τnidUi(t)/dt = –Ui(t) + fi, 

 fi ≡ fi(t) = Kabi,i(t) + pKabi–1,i(t – τ) + [γi–1(t)/σ] × 

 × {Kai,i–1(t,t – τ) cos [(1 + q) ωτ + ϕi(t) – ϕi–1(t – τ) + 

 + ψi(t) – ψi–1(t – τ)] + Kbi,i–1(t,t–τ) × 

 × cos [(1 – q) ωτ + ϕi(t) – ϕi–1(t – τ) – 

 – ψi(t) + ψi–1(t – τ)]} , (1) 

where τ ≡ τi–1(t) = te i–1(t) + Ui–1(t – te i–1(t))/ω; γi–1(t) 

is the doubled coefficient of radiation loss for a single 
trip round the NRI; p = 0 in the approximation of 
high loss, but p = [γi–1(t)/σ/2]2 in the 
approximation of a single passage; "mixed" (Kab) and 
"partial" (Ka, Kb) nonlinearity parameters are  

 Kabi,j(t) ≡ (1 – R) n2jlk [a
2

i(t) + b
2

i(t)], 

 Kai,i–1(t,t – τ) ≡ (1 – R) n2ilk ai(t) ai–1(t – τ), 

 Kbi,i–1(t,t – τ) ≡ (1 – R) n2ilk bi(t) bi–1(t – τ), 

 k = ω/c, 

where l is the length of the nonlinear medium; n is 
the refractive index; σ is the coefficient of expansion 
(compression) of the light beam. 

In the static mode of NRI operation, that is, 
with the phase progression not changing in time 
(dU/dt = 0), the model (1) can be reduced to the 
recursion. Assume that the static mode occurs at the 
parameters ai, bi, ϕi, ψi, γi, tei constant in time. Then 
from Eq. (1) we have 

 Ui = Kabi,i + pKabi–1,i + [γi–1/σ] × 

× {Kai,i–1 cos [(1 + q) (Φi–1 + Ui–1) + ϕi – ϕi–1 + ψi – ψi–1] + 

+ Kbi,i–1 cos [(1 – q) (Φi–1 + Ui–1) + ϕi – ϕi–1 – ψi + ψi–1]} , 

where the phase delay in the feedback loop is  

 Φi ≡ ωtei, Kabi,j ≡ (1 – R) n2jlk [a
2

i + b
2

i], Kai,i–1 ≡ 

 ≡ (1 – R) n2ilk aiai–1, Kbi,i–1 ≡ (1 – R) n2ilk bibi–1.  

According to Ref. 6 (pp. 15–20), the previous 
equation is a one-dimensional discrete map (DM). 

In the case of homogeneity of the optical 
properties of the NRI nonlinear medium (n2 = n2j) 
and the amplitudes of the input field (a = ai, b = bi), 
the equality Kab = Ka + Kb is fulfilled. It is 
convenient to introduce the sum parameter of 
nonlinearity K and the fraction Qa of the power of 
the component with the frequency (1 + q)ω by the 
rule: K ≡ Kab = (Ka + Kb), Qa ≡ Ka/K, then 
Ka = K Qa, Kb = K(1 – Qa). In the case of 
homogeneity of the other NRI optical properties 
(Φ = Φi, γ = γi) and the input field (ψi = 0, ϕi = 0), 
we can readily obtain DM for the case of the double-
frequency radiation: 

 Ui+1 = K {1 + p + γ{Qa cos [(1 + q) (Φ + Ui)] + 

 + (1 – Qa) cos [(1 – q) (Φ + Ui)]}/σ }, (2) 

where the value p = 0 corresponds to the high loss 
approximation; and p = (γ/σ/2)2 corresponds to the 
approximation of a single passage. 

In the case of a single-frequency radiation at the 
NRI input (q = 0) and at p = 0, σ = 1, from Eq. (2) 
we obtain  

 Ui+1 = K [1 + γ cos (Ui + Φ)].  (3) 

Consider the peculiarities of the NRI operated 
in the static mode. The interest in this mode is 
caused by the fact that the possibility of encoding 
and, correspondingly, decoding of a two-dimensional 
image has been earlier demonstrated for the NRI in 
the static mode.4 This mode is preferable, when the 
bandwidth of an optical communication channel is a 
limiting factor or when storage of decoded 
information is needed. The degree of signal hiding in 
this case depends on the characteristics of the static 
mode, which, in its turn, is determined by the 
combination of the parameters of light field, 
nonlinear medium, and NRI.  

The above possibilities are connected with the fact 
that because of the system nonlinearity the static mode 
is capable of providing for randomizing of the spatial 
distributions of the amplitude and phase of the optical 
field and the NM refractive index in the xOy plane. 
This phenomenon discovered when simulating the NRI 
processes was called the spatial deterministic chaos 
(SDC).4 It is essentially the static deterministic, but 
disordered spatial distribution of the amplitude, phase, 
and NM refractive index. 

As known, drawing distributions of some 
characteristic having a complex dynamics on the 
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plane of parameters, that is, the so-called maps, is an 
efficient way to study the properties of dynamic 
systems.6 One of the significant characteristics of the 
static mode in the NRI model is the fractal dimension 
of the attractor corresponding to the SDC 
phenomenon.  

 

Fractal dimension maps of the 
attractor in the model based on 

discrete mapping 
 

Drawing fractal dimension maps in a 
mathematical model can be helpful in solving the 
problem on optimizing the parameters and/or modes 
ensuring the highest degree of hiding for a message 
masked by a SDC.  

To draw maps, the dimensions D of the 
attractor in the model (3) were calculated, in 
particular, the Hausdorff–Besicovitch dimension: 

 0
0

ln ( )
lim ,

lnr

M r
D

r→
= −  

where r is the box size; M(r) is the number of boxes 
needed to cover the attractor in the phase space. 

6 
Figures 2 to 4 depict the maps of dimension 

D0(K, γ), D0(K, Φ), and D0(γ, Φ) under the initial 
condition U1 = K. The dark areas in the maps 
correspond to the maximum of: D0 (a), and the  
 

absolute value of D0 deviation from the nearest 
integer number, that is, 0 or 1 (b). The procedure of 
verifying the algorithms for drawing these maps for 
the case of monochromatic radiation, that is,  
model (3), is described in Ref. 7. 

The coincident structures of the fractal 
dimension maps (Figs. 2a and 3a) and the maps of 
the Lyapunov characteristic exponent (LCE) for the 
same discrete map drawn in the same coordinates as 
in Ref. 8 (Figs. 4a and b) can serve an additional 
verification.  

This coincidence of the structures has not only 
verification, but also the information meaning. It is 
in the following: it turned out that the basic Kaplan–
Yorke hypothesis is true for the considered discrete 
map (3) modeling the NRI processes. According to 
this hypothesis, it is possible to determine the fractal 
dimension D0 from the spectrum of LCE values. The 
hypothesis has been proved rigorously only for 
chaotic attractors of two-dimensional reversible maps 
[see Ref. 6, p. 190]. But the map (3) is one-
dimensional, so the validity of the Kaplan–Yorke 

hypothesis for it is not a priori obvious. 
To check the correctness of drawing the maps of 

the attractor dimension D0 in the model (2), we took 
the limiting case of the zero detuning between the 
components of the spectrum, that is, q = 0. The map 
drawn (Fig. 5) has the same structure as the map 
corresponding to the monochromatic radiation  
[model (3)], which is shown in Fig. 2. 

  
 a b 

Fig. 2. Fractal dimension D0(K, γ) maps of attractor in model (3). 
 

   
 a b 

Fig. 3. Fractal dimension D0(K, Φ) maps of attractor in model (3). 
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 a b 

Fig. 4. Fractal dimension D0(γ, Φ) maps of attractor in model (3). 
 

 

Fig. 5. Map of fractal dimension D0 of the attractor in 
model (2) in the limiting case of zero frequency detuning 
q = 0. 

 
Figures 6 and 7 demonstrate the effect of 

frequency detuning q between the spectral 
components and the power fraction Qa of the high-
frequency component on the structure of the fractal 
dimension D0 maps. At a rather small frequency 
detuning between the spectral components q = 0.01 
(Fig. 6) the D0 map for the double-frequency 
radiation becomes identical to the case of q = 0 (see 
Fig. 5), which corresponds to the single-frequency 
radiation. 

Judging from the tendency demonstrated in 
Fig. 6, the structure of the D0 map changes markedly 
starting from the frequency detuning q = 0.05.  

Interpreting the results calculated for the given 
frequency detuning (q = 0.1), one should pay 
attention to the fact that Fig. 7b corresponds to the 
equal power contributions of the spectral components 
to the nonlinear effects. The difference between these 
contributions significantly transforms the structure of 
the fractal dimension map (Figs. 7a and c) and makes 
it more similar to that for the single-frequency 
radiation (see Fig. 5). Nevertheless, the effect of the 
contributions of the low- and high-frequency spectral 
components on the structure of the D0 maps is 
asymmetric. Physically, this can be explained by the 
fact that the nonlinear phase progression U differently 
depends on the radiation frequency, as can be seen 
from Eq. (1). This difference, in its turn, manifests 
itself in the character of nonlinear dynamics. 

 
a 

  
b 

 
c 

Fig. 6. Structure of the dimension D0 maps versus the 
frequency detuning q between the radiation components: 
q = 0.01 (a), 0.05 (b), and 0.1 (c). The components have the 
same power Qa = 0.5. 

 

Comparison of the structures of the D0 maps 
(see Figs. 6 and  7) and LCE maps [Ref. 8, Fig. 10] 
indicate toward some similarity between them. This 
stimulates an independent investigation to check the 
applicability of the Kaplan–Yorke hypothesis in the 
case of discrete mapping (2) corresponding to the 
double-frequency radiation. 

In the case of a single-frequency radiation 
[model (3)], the experience of simultaneous drawing 
and studying the fractal dimension maps and 
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bifurcation lines indicates the productivity of 
interpretation of the map and line structures.7 

 

 
a 

 
b 

 
c 

Fig. 7. Structure of the dimension D0 map versus the power 
fraction Qa of the high-frequency spectral component: 
Qa = 0.1 (a), 0.5 (b), and 0.9 (c); frequency detuning 
q = 0.1. 

Therefore, it is quite correct to expect that for 
the bichromatic radiation the maps can also be 
interpreted based on drawing the bifurcation lines for 
the model (2). But this problem is of independent 
significance and is beyond the scope of this paper. 

 

Conclusions 
 
The models of processes in the NRI have been 

considered in the high loss approximation. These 

models use the DM apparatus as applied to the cases 
of single- and double-frequency radiation at the NRI 
input. To determine the ranges of parameters 
corresponding to strange or ordinary attractors in the 
models, it has been proposed to draw the maps and 
analyze the dependence of the fractal dimension on 
the NRI parameters.  

The Hausdorff–Besicovitch dimension D0 has 
been selected as a quantitative characteristic of the 
SDC phenomenon occurring in the static NRI mode. 
The families of D0 maps have been drawn on the 
following planes: nonlinearity parameter K–doubled 
radiation loss coefficient γ; nonlinearity parameter– 
phase delay in the feedback loop Φ; γ – Φ. It has 
been shown that the structure of the D0 maps 
depends on the frequency detuning q between the 
components of the bichromatic radiation and on the 
power fraction Qa of the high-frequency spectral 
component (Figs. 6 and 7). The plans for the future 
have been formulated as to draw bifurcation lines for 
the double-frequency case as a basis for the 
interpretation of the structure of the corresponding 
D0 maps.  
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