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Within the framework of the method of effective operators, simultaneous fitting of line 
intensities of cold and hot bands of the acetylene molecule lying in the 1.5 µm region is performed. 
The fitting has resulted in a set of effective dipole moment parameters reproducing the intensities 
with the experimental accuracy. 

 

Introduction 
In the past decade we successfully developed a 

global approach to description of line intensities of 
vibration-rotational transitions in acetylene molecule 
by the method of effective operators. The effective 
Hamiltonian, globally describing vibration-rotation 
energy levels in the ground electron state of 
acetylene molecule and written accurately up to the 
forth order of magnitude in the Amat–Nielsen 
grouping scheme, was proposed in Ref. 1. In Ref. 2, 
main formulae for line intensity calculations of a 
four-atom molecule were derived for calculation by 
this method. Fitting the effective Hamiltonian’s 
parameters to experimental line centers of the 
molecule was described in Refs. 3 and 4. The 
obtained effective Hamiltonian consists of 145 
parameters and satisfactorily restores positions of up 
to 1000 spectral lines in the 1–10000 cm–1 spectral 
range. Using the calculated wave functions of the 
effective Hamiltonian, we have managed to calculate 
the parameters of the effective dipole moment and 
describe line intensities of vibration-rotational 
transitions of acetylene molecule with an 
experimental accuracy in three spectral ranges.5 In 
this work, we present calculation results for line 
intensities of acetylene molecule in the 1.5 µm 
spectral range. 

Basic theory 

The absorption coefficient Sb ← a(T) for the 
vibration-rotational transition b ← a, cm–1/(mol.⋅⋅⋅⋅cm–2), 
with the temperature Ò, in K, can be written by the 
well-known expression: 
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Here ñ is the light speed; h is the Plank constant; k 
is the Boltzmann constant; Ñ is the proportion of the  

given isotopic species in the sample; ga is the 
statistical weight of the lower state; Q(T) is the 
statistical sum; νb ← a is the transition frequency 
(wavenumber); Wb ← a is the transition probability or 
line strength that can be defined as a square matrix 
element of the dipole moment operator. 

In the frame of our method, for calculation of 
the line strength we took eigenfunctions of the 
effective Hamiltonian that can be found through 
calculation of line centers. The used effective 
Hamiltonian4 is based on the assumption that there 
exists some cluster structure of vibration-rotational 
energy levels that can be deduced from relations for 
harmonic frequencies: 

 1 3 4 55 5ω ≈ ω ≈ ω ≈ ω,  (2) 

 ω ≈ ω ≈ ω2 4 53 3 . (3) 

One cluster or polyad, numbered by the integer P, 
consists of vibrational states satisfying the following 
relation for quantum numbers: 

 = + + + +1 2 3 4 55 3 5P V V V V V . (4) 

Effective Hamiltonian, in explicit form, consists 
of interactions only between vibrational states 
belonging to the same polyad. Other interactions are 
included as parameters of the effective Hamiltonian. 
 The stationary state of the linear molecule 
belonging to the ground electronic state, in the frame 
of the polyad approach, can be specified by five 
numbers: P, N, J, ε, and M, where P is the number 
of the polyad; N is the number of the vibrational 
state in the given polyad in increasing order of the 
energy; J is the quantum number of the angular 
momentum; ε = ±1 is the Wang symmetry 
coefficient; M is the projection of the angular 
momentum onto the Z axis in the laboratory system 
of coordinates. The effective Hamiltonian’s 
eigenfunction, describing this stationary state, can be 
written as follows: 
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are the combinations of Wang eigenfunctions 

� �1 2 3 4 45 5VVVVV  of the energy operator of harmonic 

molecular vibrations and eigenfunctions JMK  of the 

rigid symmetric rotor. The eigenfunction symmetry is 
usually lettered by «e» and «f», which corresponds to 
ε = 1 and ε = –1, respectively. Recall that in the 
absence of external electromagnetic fields, vibration-
rotational energy levels are M times degenerated. 

Using eigenfunctions of the effective Hamiltonian, 
the line strength for transition ′ ′ ′ ′ε ← εPN J PNJ  

between two vibration-rotational states can be 
written as2: 

Here ε
� �1 2 3 4 45 5J VVVVV

PN
C  are mixing coefficients defining 

the eigenfunction of the effective Hamiltonian, that 
can be found when calculating line centers. Functions 
in Eq. (8) for ∆K = 0; ±1 coincide with Clebsh–
Gordon coefficients: 

 Φ∆J∆K(J,K) = (1∆K JK J + ∆J K + ∆K). (9) 

Functions F∆J∆K(J,K) included in the coefficient 
of Herman–Wallis type at ∆K = 0 for P- and R-
branches have the form  

 ∆ ∆
∆ ∆ = = + + + − 2

0 ( , ) [ ( 1) ].V V
J K J JF J K b m d J J m KV∆∆∆∆  (10) 

Here m = –J, J + 1 for P- and R-branches, 
respectively. We restrict ourselves in this work to 
expression (10) for Herman–Wallis factor. Other 
cases are described in Ref. 5. Functions 

∆ ∆� �
� �4 5
4 5( , , )f V

V∆∆∆∆  under square root in Eq. (8) are 

given in Ref. 2. The combination of products of the 
Kronnecker symbols appears in Eq. (8) under square 
root as a consequence of using of the Wang basis 
functions. Parameters in the matrix elements of 

effective dipole moment operator 

∆ ∆ −∆ −∆=� � � �4 45 5M M
V V∆ ∆∆ ∆∆ ∆∆ ∆ , 

κ =( 1,2,3,4,5)i i
V∆∆∆∆ , =( 4,5)ia i

V∆∆∆∆ , Jb
V∆∆∆∆  and Jd

V∆∆∆∆  in 

Eq. (8) and (10) describe simultaneously the line 
intensities of “cold” and “hot” bands of the given 
series of transitions, with the given ∆P. In our 
semiempirical method, these parameters are fitted to 
experimental line intensities and then can be used for 
prediction of line intensities for transitions with high 
values of J, as well as for calculation of line 
intensities of "hot" bands of the given series. 
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Parameters of the operator of effective 
dipole moment for ∆∆∆∆P = 10  

In the framework of the above method, using 
the least-square method, we have fitted parameters of 
the operator of the effective dipole moment to the 
experimental line intensities of four bands6 in the 
6500 cm–1 range. These bands belong to a series of 
transitions with ∆P = 10. Values of mixing 

coefficients ε
� �1 2 3 4 45 5J VVVVV

PN
C  were obtained earlier as a 

result of global fitting of the effective Hamiltonian’s 
parameters to experimental line centers lying below 
10000 cm–1 (Ref. 4). The statistical sum Q(T) was 
taken from Ref. 7. The proportion Ñ of the isotopic 
species 12Ñ2H2 is equal to 0.977828 (Ref. 6). 

The main aim of fitting by the least-square 
method is the minimization of the standard deviation 
functional defined as follows: 
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where obs
iS and calc

iS are the experimental and 

calculated intensities of i-th line; 
obs

100%
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i

S σδ = , σi is the 

experimental deviation of ith line, %; Nobs is the 
number of lines included in the fitting; n is the 
number of fitted parameters. At the standard 
deviation close to unity, the main part of the fitted 
parameters has an experimental accuracy. To estimate 
the fitting quality, it is preferable to use the root 
mean square deviation (RMS) defined as: 
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Useful information about the quality of fitting 
is also contained in the mean deviation for band 
(MR) between the calculated and experimental line 
intensities, defined by 

 
obs calc

obs
band 1

1
100%

N

i i

ii

S S
MR

N S=

−= ⋅∑ , (13) 

where Nband is the number of fitted lines for the band. 
When fitting line intensities, their experimental 

values were weighted with the factor σ = 2%. Just 
this accuracy for line intensity calculation is pointed 
in Ref. 6. The fitting has resulted in the values: 
χ = 0.65 and RMS = 1.3%, which indicate that 
experimental intensities are reproduced with the 
experimental accuracy. The values of the obtained 
effective dipole moment parameters are given in 
Table 1, and the results of fitting are summarized in 
Table 2.  

Table 1. Parameters of effective dipole moment operator 
for C2H2 molecule, ∆∆∆∆P = 10  

Parameter* Value Parameter Value 

M10100 0.010519(9)** M11011 0.0009086(8)
κ4 –0.044(1) bJ –0.00028(4)
κ5 –0.018(1) dJ –0.000056(2)
bJ –0.00026(2) – – 

* Values of parameters Ì∆V are given in Deby, other 
parameters are dimensionless. 

** The error corresponding to the standard deviation is 
given in parenthesis. 

 

Line intensities of the (ν1 + ν2 + ν4 + ν5)
0 band 

are mainly stipulated by intensity transfer from the 
ν1 + ν3 band due to anharmonic resonance interactions 
between these bands. Therefore, El Hachtouki and 
Vander Auwera6 have included four coefficients of 
Herman–Wallis factor to describe the rotational 
dependence of line intensities of the weaker band 
(ν1 + ν2 + ν4 + ν5)

0 in the frame of the nonresonance 
model. In our model, the rotational dependence of 
line intensities is mainly included as the rotational 
dependence of mixing coefficients. As a consequence, 
we can satisfactorily reproduce experimental 
intensities of all four bands even with a single main 
parameter M10100. Values of this parameter and 
statistical results of fitting for different bands are 
given in Table 3. 

 

Table 2. Statistical results of fitting for different bands 

State * 
Upper state Lower state 

Range, cm–1 Jmax 
Line 

number 
MR, % RMS, % 

1010000 0000000 6452.6–6626.5 37 57 0.01 0.74 
110111–1 0000000 6564.1–6685.3 30 47 0.01 1.11 
1011010 0001010 6448.3–6587.3 30 84 0.02 1.32 
1010101 0000101 6459.2–6591.6 28 81 0.02 1.63 

* Vibrational states are labeled by V1V2V3V4V5�4�5 quantum numbers. 
 

Table 3. Results of fitting of experimental line intensities of C2H2 molecule  
with a single parameter for the 1.5 µµµµm region 

State* 
Upper state Lower state 

Range, cm–1 Jmax 
Number 
of lines 

MR, % RMS, % 

1010000 0000000 6452.6–6626.5 37 57 2.00 2.45 
110111–1 0000000 6564.1–6685.3 30 47 2.41 3.03 
1011010 0001010 6448.3–6587.3 30 84 –4.49 4.83 
1010101 0000101 6459.2–6591.6 28 81 2.27 2.77 

χ = 1.77 RMS = 3.5% M10100 = 0.01066(1)D 

* Vibrational states are denoted by V1V2V3V4V5�4�5 quantum numbers. 
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Fig. 1. Relative deviations of experimental line intensities 
for (ν1 + ν3)

0 and (ν1 + ν2 + ν4 + ν5)
0 bands from calculated 

ones. Squares denote relative deviations of line intensities 
for fitting with a single parameter; triangles denote relative 
deviations of line intensities for fitting with full set of 
parameters 
 

In the figure, standard deviations between 
experimental and calculated line intensities for two 
“cold” bands are shown. The linear dependence of 
the standard deviations on m for a single-parameter 
fitting is clearly seen, although standard deviations  
 

themselves only slightly exceed the experimental 
uncertainty of line intensities.  

Conclusions 

A set of parameters for the effective dipole 
moment operator of the acetylene molecule is 
calculated, which satisfactorily reproduces line 
intensities of the molecule in the 1.5 µm range. The 
set reproduces experimental line intensities6 for four 
bands ν1 + ν3, (ν1 + ν2 + ν4 + ν5)

0, ν1 + ν3 + ν4 – ν4, and 
ν1 + ν3 + ν5 – ν5 with the experimental accuracy. It 
can be used for intensity calculation of other “hot” 
bands lying in the 1.5 µm range, i.e., for generation 
of a high-temperature spectrum of acetylene molecule 
in the given range of wavelengths. 
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