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An iterative method is proposed for reconstruction of a wave phase at the exit pupil of an 

optical system from the intensity distributions in the images of an unknown extended incoherent 
source in some planes parallel to the focal plane. It is assumed that at each of the iterations the 
phase is corrected for the value obtained in accordance with this method. 

 

Introduction 
The problem of restoring the phase of a field in 

front of a lens from the field amplitude and intensity in 
several planes parallel to the focal plane was 
investigated by many authors. 

1 Seeking a solution to 
this problem can be reduced to the solving the 
following equation: 

 =0[ ( )] ( , , )F GG z g x y z , =
2

( , , ) ( , , )g x y z I x y z , (1) 

where 

 ( ) ( ) ( )2 ,, , iG A e πΦ ξ ηξ η = ξ η   

is the wave function of the field in front of the lens 
with the known amplitude A(ξ,η), (ξ,η) ∈  Ω is the 
lens area, and unknown function of wave front  
aberrations Φ; F denotes the two-dimensional Fourier 
transform in terms of the variables (ξ,η); z is the 
axial coordinate of the image plane counted off from 

the focal plane of the lens, and 
2 2( )/2

0
izG e− ξ +η=  is the 

phase factor of defocusing. The function I(x,y,z) is 
the known intensity within the area ω of the plane 
zs, of the image recording = 1,s S . 

From the theoretical point of view, the 
knowledge of the amplitude A  is excessive. The 
wave function G can be reconstructed from the image 
within the volume that includes the focal plane. 

2 
From the viewpoint of practice, this theoretical result 
is important, because it makes, based on the solution 
of the wave problem for Eq. (1) the ground for 
seeking ways of developing constructively simple 
wave front sensors.  

The numerical experiments on recovering the 
aberration function Φ from the wave function G 
determined by Eq. (1) from the noisy intensity in a 
limited area ω show that the recovered function Φ 
can significantly differ from the "real" aberration 
function for this experiment.  

An adaptive-optics system (AOS) intended for 
compensating for the wave front aberrations provides 
for iteratively recovering wave front from the 

solution of phase problem for Eq. (1) [Ref. 3]. The 
function Φ�  found from the solution of the phase 
problem is taken as an estimate of the function Φ, for 
which the wave front is being corrected. Then the 
amplitude A and the intensity I are measured 
repeatedly, the phase problem (1) is solved for them, 
the wave front correction is performed for these new 
values, and so on. This method will be referred to as 
the method of wave front reconstruction from 
adaptively formed images of the source. 

The possibility of applying this approach to 
wave front reconstruction by Eq. (1) from only the 
intensity is considered in Section 1. 

As applied to astronomic objects, the  
problem (1) is the problem of wave front 
reconstruction from images of a point source. When 
observing an arbitrary portion of the sky, the 
probability of finding the natural reference source is 
low. 

4 That is why the application of laser guide stars 
for wave front measurements is actively investigated. 

5 
An alternative approach is the wave front 
measurements using images of an unknown extended 
source. In this case, Eq. (1) should be replaced by 
the convolution equation  

 ∗ =0( , , ) ( , ) ( , , ),h x y z I x y I x y z  = 2 ,h g  = ,sz z  (2) 

where I0 is the unknown intensity distribution over the 
source. The source is assumed to be in the isoplanatic 
region of the optical system. 

The traditional method to exclude I0 from 
Eq. (2) consists in formation of the equalities in the 
frequency region:  

 
ξ η ξ η=
ξ η ξ η1 1

( , , ) ( , , )
( , , ) ( , , )

s sH z J z
H z J z

, = 2,s S , (3) 

where H and J are the inverse two-dimensional Fourier 
transforms of the functions h and I in terms of the 
variables x  and y.  

Equalities (3) play the role of equalities (1) in 
the problem of wave front reconstruction from the 
corresponding images. The transition from Eq. (2) to 
Eq. (3) is possible, when the images of the source are 
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known. In reality, this condition is not fulfilled, and 
therefore one faces the problem of extending the 
image in the area outside the image at unknown I0 
and h.  Section 2 considers the method of wave front 
reconstruction from adaptively formed images based 
on the solution of Eq. (2). 

1. Wave front reconstruction from 
adaptively formed images of a point 

source  
The problem of determination of the wave 

function G from Eq. (1) will be considered in the 
geometric interpretation as a problem on determining 
common point of the given sets in the Hilbert space. 
The Hilbert space H is taken to be the set of 
complex-valued functions g(x,y,z) defined on the 
direct product Oxy × {z1, …, zs} with the summable 
square in terms of the variables x and y and the norm 

 ( )2 22

1 1

( ) , , d d .
S S

s s

s s

g g z g x y z x y
+∞

= = −∞

= =∑ ∑∫ ∫  

Introduce two sets in this space:  

 { }= = = Ω  1 0: ( ) , supV g g F GG z pG  

and 

 
( ) ( ) ( ) ( ){ }

=

= = = ∈ ω

2

1/2
2: , , , , , , ; , ,s s s

V

g g x y z a x y z I x y z x y
  

 = 1,s S . 

The functions g ∈  V1 and G are related by a 
continuous biunique correspondence  

 − ∗=   
1

0( ) ( ),G F g z G z  

where the asterisk ∗  denotes complex conjugation. 
Therefore, the wave problem can be formulated as 
finding the function  

 ∈ =0 1 2g V VV . (4) 

The restriction on the form of 1V  was 
introduced for the first time by Fienup 

6 in the 
problem on a source reconstruction from its carrier 
and the amplitude of its Fourier spectrum. 

Any point in expression (4) is connected with 
the point of minimum of the approach functional 

 ( ) = α − + α −2 2
1 2 1 1 2 2, , ,J g g g g g g g  (5) 

 α + α =1 2 1 , α α >1 2, 0 . 

The minimum of the functional is achieved at 
g1 = g2 = g ∈  V0, therefore the functions providing 
for the minimum of the functional (5) determine the 
wave function G of the problem (1). 

If the functional (5) is minimized by the 
coordinate descent method first in terms of g1 and g2 
and then in terms of g, then we obtain the iterative 
algorithm 

7: 

 ∈10 1g V , ∈20 2g V , = α + α0 1 10 2 20,g g g  

 1 1 1n ng Pg+ = , 2 1 2 ,n ng P g+ =  (6) 

 ( )1 1 1 1 2 2 1n n n n ng g g g g+ + += + λ α + α − , < λ <0 2. 

Here P1 and P2 are the operators of projection onto 
the sets V1 and V2, defined according to the 
condition  

 
∈

− = −inf
k k

k k
g V

g P g g g , = 1, 2k . 

Since 

 ( ) ( )
=

− = − =∑
22

1 1

1

S

s s

s

g g g z g z  

 ( ) ( ) ( ) ( )− ∗ −

= =

= − = −∑ ∑
2 21 1

0 0

1 1

,
S S

s s s s

s s

F g z GG z G z F g z G  

 1
1 1 1 0( ) ,n ng Pg F GG z−

+ = =     

where 

 ( ) ( )1
0

1

1
S

s n s

s

G G z F g zS
∗ −

=

= ∑   

at Ω and G = 0 outside Ω. 
The approximation  

 

( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( )

+ = =


≠ ∈ ω


= = ∈ ω

 ∉ ω



2 1 2

2

2

, , , ,
for , , 0, , ,

, ,

, , for , , 0, , ,

, , for , .

n n

n
n

n

n n

n

g P g

a x y z g x y z
g x y z x y

g x y z

g x y z g x y z x y

g x y z x y

 

If we take the approach functional in the form  

 ( ) = −1 1 2 1 2, ,J g g g g  

then its minimum is achieved at g1 = g2 ∈  V0. 
The method of coordinate descent first in terms 

of g1 and then in terms of g2 leads to the Gershberg–
Saxton algorithm: 

 ∈10 1g V , ∈20 2g V , 

 ( )2 1 2 2 2 1 2n n n ng g P g g+ = + λ − , (7) 

 ( )1 1 1 1 1 2 1 1n n n ng g Pg g+ += + λ − , ( )λ λ ∈1 2, 0,2 . 

2. Numerical simulation 

The phase of the unknown field was defined by 
a segment of the series over Zernike polynomials 

8: 
 

 ( ) ( ) ( ) πΦ = π ρ θ + θ ∑2 2 cos sin ,m m m
n n nR A m B m  (8) 

which accounted for the following modes: tilt 
′1 1

1 1( , )A B , coma 1 1 3 3
3 3 3 3( , , , )A B A B , defocusing and 
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spherical aberration 0 0
2 4( , )A A , and astigmatism 

2 2 2 2
2 2 4 4( , , , )A B A B ; (ρ,θ) are the polar coordinates of the 

beam aperture, ρ is the polar radius related to the 
beam radius. The values of the modes were simulated 
by the generator of normal random numbers and 
restricted in the absolute value to the value of α. The 
amplitude of the unknown field was simulated by the 

function 
2 /2A Ce−ρ= , where C is the normalization 

coefficient, at which the integral of the squared 
amplitude equals unity. 

The position of the planes, at which the 
intensity was recorded, was determined by the axial 
coordinate z, varying within the range 8.z <  In this 
range, defocusing in the absence of other aberrations 
does not distort significantly the image of a point 
source. 

8 The intensity corresponding to the function 
G chosen was calculated by Eq. (1) and distorted by 
the additive noise with the variance σ2.  

The geometry of the beam aperture and the 
image intensity give rise to the two sets: V1, V2, and 
their intersection V0. To find the point g ∈  V0, a 
combined algorithm was used: a half of all iterations 
(20–30 iterations) were performed by the algorithm (6) 
with the initial approximation g10 = F[GG0(z)], 

=
π
1

G  and ( )=20 2 , ,g a x y z  inside ω and g20 = g10 

outside ω. Other iterations were continued by the 
algorithm (7). This combined algorithm provided for 
a closer approach to the minimum of the norm 

−1 2g g , than each of the algorithms (6) and (7) did 

at the same total number of iterations. The point g1 
obtained at the final iteration by the combined 
algorithm was taken to be an estimate of the point 
from V0. The components entering into Eq. (8) were 
separated from the phase of the function G1 
corresponding to the function g1. 

Then the phase (8) was corrected for by the 
value of the components separated from the phase G1 
(partial correction). The intensity is calculated 
according to Eq. (1) from the corrected phase (8). 
The new intensity was distorted by the additive noise 
with the same variance σ2. This new intensity 
determined the set V2. The combined algorithm 
consisting of the algorithms (6) and (7) was used to 
determine the new estimate g1 ∈  V0, and so on.  

The quality of compensating for the modes was 
characterized by the maximum of intensity 

( )=
, ,

max max , ,
x y z

I I x y z  in all planes. The described 

method of wave front reconstruction and 
compensation in AOS is similar to the method of 
external tuning of AOS using the functional of image 
quality. The difference is that in the latter case the 
modes are determined from the intensity distributions 
in the images of the source in different planes z = zs, 

= 1,s S . 
Consider an example of wave front 

reconstruction from images of a point source in three 

planes z = 0, –5, and 5 and the parameters α = 0.2, 
σ = 0.06. The initial values of the even and odd 
modes and their values in the process of partial 
correction are tabulated below. 

 

Odd modes (tilt and comas) – six modes 

–0.0865 –0.2000 0.0251 0.0575 –0.2000 0.2000
–0.0435 0.0011 –0.0069 –0.0350 –0.0274 0.1017
–0.0143 –0.0147 –0.0103 –0.0043 –0.0459 –0.0055
–0.0059 –0.0075 0.0121 0.0024 –0.0019 –0.0050

 
Even modes (defocusing, spherical aberration,  

and astigmatism) – six modes 

0.2000 –0.0075 0.0655 0.0349 –0.0373 0.1452
0.0709 0.0652 0.0181 0.0764 –0.0463 0.1042
0.0155 0.0356 –0.0053 0.0079 –0.0325 –0.0181
0.0103 0.0153 –0.0135 –0.0134 –0.0286 0.0113

 

The initial maxI value and the values changed 
in the process of partial correction of the modes are 
respectively: 1.2742, 2.4042, 2.8437, and 2.8792. The 
examples presented below correspond to the case 
with the increased noise: z = 0, –5, and 5; α = 0.2, 
σ = 0.1. 

 

Odd modes (tilt and comas) – six modes 

–0.0865 –0.2000 0.0251 0.0575 –0.2000 0.2000
–0.0253 –0.0034 0.0061 –0.0597 –0.0368 0.1915
–0.0037 –0.0219 –0.0064 –0.0637 0.0150 0.0528
 0.0058 –0.0012 –0.0040 –0.0083 0.0142 0.0411

 
Even modes (defocusing, spherical aberration,  

and astigmatism) – six modes 

0.2000 –0.0075 0.0655 0.0349 –0.0373 0.1452
0.0713 0.0730 0.0437 0.0584 0.0016 0.1121

 0.0126 0.0600 –0.0318 0.0022 0.0014 –0.0088
 0.0061 0.0070 0.0131 –0.0343 –0.0375 –0.0141

 

In this case, the initial maxI value and the values 
changed in the process of partial correction for the 
modes are: 1.3568, 2.2109, 2.7676, and 2.8556. 

The same example in the absence of noise: 
z =  0, –5, and 5; α = 0.2, σ = 0, leads to the 
following change of the modes in the process of their 
correction: 

 
Odd modes (tilt and comas) – six modes 

–0.0865 –0.2000 0.0251 0.0575 –0.2000 0.2000
–0.0172 –0.0004 0.0082 –0.0256 –0.0009 0.0082

0.0001 –0.0004 –0.0004 –0.0003 0.0003 0.0008
–0.0000 –0.0000 –0.0000 –0.0000 0.0000 0.0000

 

Even modes (defocusing, spherical aberration,  
and astigmatism) – six modes 

0.2000 –0.0075 0.0655 0.0349 –0.0373 0.1452
0.0298 0.0187 0.0180 0.0063 –0.0262 –0.0085
0.0006 0.0017 –0.0011 0.0000 0.0010 –0.0001
0.0001 0.0001 0.0000 –0.0000 –0.0001 –0.0000

 

The initial maxI value and the values changed in 
the process of partial correction of the modes are 
respectively: 1.2004, 2.8250, 2.8899, and 2.8900. 

These examples correspond to the distributions 
of the initial modes, which can be successfully 
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compensated for by AOS. Such distributions of the 
initial modes were most frequent in simulation. 
However, some distributions of the initial modes 
could not be completely compensated for, but the 
value of maxI always increased markedly. 

3. Wave front reconstruction from 
adaptively formed images  

of an unknown extended source  
It is proposed to consider equality (2) as an 

equation connecting three unknowns: I(x,y,z), 
I0(x,y), and g(x,y,z). Equality (2) defines the set 

 ( ) ( ) ( ){ }= = ∗ 2
0 0, , :V I I g I z I g z . 

The measurements and the a priori data on the 
functions define another one set  

 ( ) { }{= = + ω × ∈meas1 0 1, , : in ,..., , ;SV I I g I I n r r n N  

 ≥ = ω0 0 00 and sup ;I pI  

 }= = Ω  0 ( ) , sup ,g F GG z pG  

where N is the set determining the a priori statistical 
properties of noise in the intensity measured in the 
image; ω0 is the area in the object plane, in which 
the source intensity affects the image in the area ω. 
In the geometric interpretation, the problem of wave 
front reconstruction from incomplete images of an 
unknown source can be reduced to determination of a 
point 

 ( ) ∈0 1, , .I I g VV  (9) 

Introduce three Hilbert spaces: spaces of real 
functions and complex-valued functions defined in 
o x y × {z1, …, zS} and real functions in o x y. All the 
functions are modulo square-integrable. On the direct 
product of these spaces we define the Hilbert space H 
with the norm  

 ( ) ( ) ( )
= =

= + + =∑ ∑
2 2 22

0 0

1 1

, ,
S S

s s

s s

I I g I z I g z  

 

( ) ( )

( )

2 2
0

1

2

1

, , d d , d d

, , d d .

S

s

s

S

s

s

I x y z x y I x y x y

g x y z x y

∞ ∞

= −∞ −∞

∞

= −∞

= + +

+

∑∫ ∫ ∫ ∫

∑∫ ∫

 

Any point in Eq. (9) is connected with the point 
of the minimum of the approach functional  

 ( ) ( )= − − −
2

1 0 1 01 1 1 0 01 1, , , , , , ,J I I g I I g I I I I g g , 

where (I, I0, g) ∈  V and (I1, I01, g1) ∈  V1. The 
minimum of the functional is achieved at 
(I, I0, g) = (I1, I01, g1) ∈  VV1. 

The minimization of the functional J1 will be 
performed by the method of coordinate descent in 
terms of the variables (I,I0,g) ∈  V, then in terms of 
the variables (I1,I01,g1) ∈  V1, and so on. Let the nth 
approximation be defined at the points (I,I0,g)n ∈  V 
and (I1,I01,g1)n ∈  V1. If the (n + 1)th approximation 
from V1 is defined as  

 ( ) ( )+ =
11 01 1 01

, , , , ,Vn nI I g P I I g  

then the approximation  

 
{ }

{ }
meas 1*

1 1
1

in ,..., ,
in ,..., ,

S
n

n S

I n z z
I

I z z+
+ ω ×=  ω ×

 

where *n  is the solution of the problem  

 

( ) ( )

( ) ( )

ω
=

ω∈
=

− − =

= − −

∑

∑

2
meas *

1

2
meas

1

min .

S

n s s

s

S

n s s
n N

s

I z I z n

I z I z n

 

The index ω indicates that the integration in the 
equation for the norm in terms of the variables (x,y) 
is performed over the area ω. The approximation  

 +
ω ≥

= 


0 0 0
01 1

at the points of , at which 0;

0 at the other points.
n n

n
I I

I  

The approximation g1 n+1 is determined, with the 
allowance for what has been said in Section 2, by the 
equality  

 + =1 1 0[ ( )],ng F GG z  

where  

 
( ) ( )−

=


Ω

= 
 Ω

∑
* 1
0

1

1/ in ,

0 outside .

S

s n s

s

S G z F g z
G  

Now consider the (n + 1)th approximation for 
the variables from the set V. The set V relates three 
functions I, I0, and g by same nonlinear equality, 
and therefore it is impossible to obtain the analytical 
equation for the approximation (I, I0, g)n+1. Taking 
this into account, we shall seek this approximation 
from the condition of descent of the approach 
functional: 

 
( ) ( )

( ) ( )

+ +

+

  ≤ 

 ≤  

1 0 1 01 11 1

1 0 1 01 1 1

, , , , ,

, , , , , .

n n

n n

J I I g I I g

J I I g I I g
 

Using the equality I = I0 ∗ g 2, we can exclude 
the variable I from the functional J1: 

 

( ) ( )

( ) ( )

=

=

= = ∗ − + − +

+ −

∑

∑

22 2
1 1 0 0 1 0 01

1

2
1

1

,

.

S

s

s

S

s s

s

J J I g I g z I I I

g z g z
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Only the third term of the functional depends 
on the phase of the function g(zs). From the 
condition of minimum of the functional in terms of 
arg g(zs), we can find that arg g(zs) = arg g1(zs). The 
minimization of the functional in terms of the variables 
(I, I0, g) from the set V is reduced to the unconditional 
minimization, in I0 and a(zs) = g(zs) , of the 
functional  

 

( ) ( )

( ) ( )

=

=

= ∗ − + − +

+ −

∑

∑

2 22
1 0 0 1 0 01

1

2
1

1

,

.

S

s

s

S

s s

s

J I a I a z I I I

a z g z  (10)

 

The sign of the variable a(zs) affects only the 
third term, whose minimum is achieved at a(zs) ≥ 0, 
and therefore the restriction on the sign a(zs) ≥ 0 can 
be neglected. 

To realize the gradient descend of the  
functional (10) in terms of the variables I0 and a, we 
should know the equation for the antigradient vector 
in these variables. Determine the gradient based on 
the variation of the functional. The variation of the 
functional (10) corresponding to the variation δI0 is 
 

 ( ) ( ) ( )
=

 
 δ = δ ∗ − + −
 
 
∑

2 22
1 0 0 1 0 01

1

,
S

s s

s

J I a I a z I z I I = 

( ) ( ) ( ) ( )
=

 = ⋅ − δ ⋅ + − δ = ∑
2 2

0 1 0 0 01 0

1

2 , 2 ,
S

s s s

s

I a z I z I a z I I I  

 ( ) ( ) ( )
=

 
  = ∗ − ⋅ + − δ  

 
∑

2 2
0 1 0 01 0

1

2 , ,
S

s s s

s

I a z I z a z I I I  

where 

 ( ) ( )= − −, ,s sa z a x y z . 

The variation of the functional (10) corresponding 
to the variation δa is 

 

( )

( ) ( ) ( ) ( )
=

δ =

 
 = δ ∗ − + − =
 
 
∑

1 0

2 22
0 1 1

1

,

S

s s s s

s

J I a

I a z I z a z g z
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=

 = ∗ − ∗ δ + 

 + − δ = 

∑
2

0 1 0

1

1

2 , 2

,

S

s s s s

s

s s s

I a z I z I a z a z

a z g z a z

 

 

( ) ( )( ) ( )

( ) ( ) ( )

2
0 1 0

1

1

2 2

, ,

S

s s s

s

s s s

I a z I z I a z

a z g z a z

=

  = ∗ − ⋅ +  


+ − δ 


∑
 

where ( ) ( )= − −0 0, ,I x y I x y . The right-hand sides of 

the equations for the variations δJ(I0, a) are the 
scalar products of variations of the variables I0, a(zs) 
and the functional derivatives of the approach 
functional with respect to these variables. These 
derivatives, taken with the negative sign, define the 
antigradient, in whose direction, from the point 
(I0,a)n, it is possible to decrease the value of the 
approach functional. 

4. Discussion and conclusions 
We have described and demonstrated, through 

numerical simulation, the method, which allows the 
phase function to be calculated in the plane of the 
output pupil from the incomplete intensity 
distributions in adaptively formed images of the 
source in several parallel planes.  

The images in several planes can be identified 
with the images in one plane with different phase 
modulations of the wave at the output pupil. In this 
sense, other modulations are also acceptable. Thus, in 
AOS with the Shack–Hartman wave front sensor, 
the image of an optical system and sensor spots can 
be considered as different images of a point source, 
corresponding to different modulations of the wave 
field. Therefore, the proposed method can be used to 
reconstruct the phase at the pupil from these 
intensity distributions. 
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