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The paper summarizes models of the effective operators (Hamiltonian and dipole moment 
operators) presented in the literature. These models are used for theoretical treatment of spectra of 
diatomic molecules in the nonsinglet 2Ï state. Matrix elements are presented of the effective 
operators calculated in the basis of a set of wave functions corresponding to Hund’s case (a). 

 

Introduction 

In this paper I consider the problems, which 
arise in a study of the energy levels and line 
intensities of diatomic molecules in nonsinglet 2Ï 
state. This state is the ground state of the nitric 
oxide molecule and stable radicals like OH and ClO, 
which play an important role in the photochemistry 
of the troposphere and stratosphere. The interaction 
of electron motions with the molecular rotation and 
vibration determines specific features of the spectra 
of these molecules and, accordingly, of the 
theoretical treatment. Therefore, to create a global 
treatment model of the vibrational-rotational spectra 
of stable diatomic radicals analysis of theoretical 
models considered in the literature has been 
performed. 

The 2Ï electronic state is characterized by a 
unity projection of the orbital angular momentum on 
the molecular axis and by the total spin of 1/2. The 
designations of the momenta used and corresponding 
quantum numbers are given in Table 1.  

Since Λ ≠ 0, the state is twice degenerate 
relative to Λ and thus the projection of the spin Σ  
can take both positive and negative values. The 2Ï 
state is a multiplet comprising two components, 2Ï1/2 
and 2Ï3/2. These two components correspond to 
different values of the projection of the total 
electronic angular momentum on the molecular 
axis  Ω, Ω = |Λ + Σ|, equal to 1/2 and 3/2, 
respectively. Splitting into two components is due to 
spin-orbital interaction. Each of the components, in 
its turn, remains degenerate relative to Λ, the so-
called Λ-doubling. 

 
Table 1. The designations of the angular momenta 

Quantum numbers  The type of 
angular momentum 

Operator 
Total Projection 

Electronic orbital L L Λ 
Electronic spin S S Σ 
Rotational  R R … 
Total J = R + L + S J Ω = Λ + Σ
Total–Spin N = R + S N Λ 

The vibrational-rotational spectrum of such a 
molecule consists of two subbands as if corresponding 
to the vibrational-rotational spectra of the 2Ï3/2 and 
2Ï1/2 components, respectively. As long as L 
electronic orbital angular momentum and S spin 
angular momentum precess about the molecular axis, 
quantum numbers Λ, Σ shall remain “good”. This 
means that the quantum number Ω is also “good” and 
the transitions between the components 2Ï1/2 and 
2Ï3/2 are forbidden by the selection rule ∆Σ = 0. This 
case is referred to as Hund’s  case (a) when the spin-
orbit split ∆E ∼  AΛΣ is large compared with the 
rotational energy and the interaction between 
molecular rotation and electron motions is weak. The 
constant of spin-orbit interaction A may take both 
positive and negative values. If À > 0 (ordinary 
situation) the energy of the 2Ï1/2 state is lower than 
that of the 2Ï3/2 state. For the À < 0 the situation is 
the opposite. 

With the increasing rotational energy of a 
molecule, the interaction between molecular rotation 
and orbital motion increases, the spin selection rule 
may be violated and, as a result, gradual transition of 
the molecule from the state characterized as Hund’s  
case (a) to Hund’s case (b) occurs. Therefore, in 
addition to the 2Ï1/2 → 2Ï1/2, and 

2Ï3/2 → 

2Ï3/2 

subbands, 2Ï1/2 ←→  2Ï3/2 transitions will take place. 
Thus the vibrational-rotational spectrum comprises 
two subbands 2Ï1/2 → 2Ï1/2, and 2Ï3/2 → 2Ï3/2 the 
so-called main subbands, and two weak satellite 

subbands 2Ï1/2 ←→  2Ï3/2. Intensity of the satellite 
subbands is 104 lower than the intensity of the main 
subbands.1  

The interaction between 2Ï state with other 
Σ electronic states (singlet states) lifts the ± Λ 
degeneracy and leads to doubling of the levels. The 
interaction between the rotational and orbit motion 
yields Λ doubling for any angular momentum J and it 
increases with increase of the total angular 
momentum J. 

Thus, all the specific features in the spectra of 
diatomic molecules in the ground nonsinglet 2Ï state 
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are accounted for in the models that are used in 
calculations of the line centers and intensities. 

Effective Hamiltonian for diatomic 

molecule in 
2
Ï state 

The problem of constructing an effective 
Hamiltonian for multiplet electronic states have been 
discussed by many authors.1–11 In processing infrared 
spectra a phenomenological Hamiltonian with a 
variable number of interactions and accordingly 
parameters is used.12  

For a diatomic molecule in the absence of 
external field the Hamiltonian for the electronic and 
nuclear motions can be written10,11 in the following 
form:  

 = + + + Π + + +
µ

2 2 2

e SO SR SS

1 1
( ) ,

2 2
r

H H P B H H H
M

Rr   

  (1) 

in the system of coordinates with the origin in the 
center of mass of the molecule. In Eq. (1) 
µ = MaMb/(Ma + Mb) and M = Ma + Mb are, 
respectively, the reduced and total mass of the 
nuclei.  

 B(r) = �2/2hcµr2; i

i

pΠ = ∑   

is the total momentum of the electrons; He includes 
both the kinetic energy of the electrons and the 
complete Coulomb potential energy. The second term 
in Eq. (1) is the vibrational kinetic energy, the third 
one is the rotational energy: 
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is the operator of the spin-orbit interaction;  

 = λ −2 2

SS ( )(3 )
z

H r S S   (4) 

is the operator of the spin-spin interaction; 

 = γSR ( )H NSr  (5) 

is the operator of the spin-rotation interaction. Some 
authors (Refs. 8 and 13) use the phenomenological 
form of the spin-rotation operator (5) = γSR ( ) :H RSr  
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Representation the spin-rotation operator in 
such a form simulate an additional term in the spin-

orbit interaction. This term gives small corrections to 
spin-orbit constant A(r). As a rule, this correction is 
neglected in calculating the matrix elements. Various 
representations of the spin-orbit operator give rise to 
difference in matrix elements of the effective 
Hamiltonian.  

In the above formulas B(r) is rotational 
constant, A(r), γ(r), λ(r) are parameters associated 
with the spin-orbit, spin-rotation, and spin-spin 
interactions.  

To derive an effective rotational Hamiltonian for 
a degenerate state of a diatomic molecule one uses 
three-stage scheme of transformation to separate 
“electronic,” “vibrational,” and “rotational” parts. 
Quite often, to separate the variables in the 
Hamiltonian, the Van Vleck transformation is used,14 
which is a particular case of the generalized contact 
transformations.11 Following Refs. 6 and 8, consider 
the scheme of formulation of the effective 
Hamiltonian.  

The zero-order approximation is defined as 
e

0H  = He, and the other terms from the complete 
electron-nuclei Hamiltonian determine the 
perturbation operator: 

 = + λe

0 ,H H V  

where 

 = + + Π + + +
µ

2 2 2

SO SR SS

1 1
( ) .

2 2
r

V P B H H H
M

Rr  (6) 

We assume that the electronic states are located 
far enough from each other, the spin-orbit coupling is 
weak compared with the electronic energy intervals 
and can be considered as perturbation. The choice of 
a set of basic functions is arbitrary, however under 
the assumptions made, one chooses the wave 
functions corresponding to Hund’s  case (a) coupling. 
The case (a) wave functions are denoted by |nΛSΣ, r〉 
as functions of the internuclear distance r. The 
solution of electronic Schrödinger equation with the 

e

0H  Hamiltonian gives us the electronic energy, 
which depends on the internuclear distance and 
represents the Born-Oppenheimer potential for the 
motion of the nuclei in the nth electronic state. This 
state with the basic vector |nΛSΣ, r〉 is degenerate, 
since for a given electronic quantum number n there 
are 2S + 1 possible spin projections –S, –S + 1, … , S 
and two possible orbital angular momentum 
projections –Λ, Λ for Λ ≠ 0. 

The electronic contact transformations are being 
chosen such that they enable one to remove the off-
diagonal relative to n matrix elements from the 
Hamiltonian. As a rule, one uses for that 
perturbation theory in terms of projectors (Refs. 8, 
10, 11). The projector on the electronic state n is 

constructed ( )r
n

P n n= , where index (r) means the 

dependence on the internuclear distance. The explicit 
form of the perturbation operator may be written in 
the following form: 
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It must be noted, that the perturbation operator 
is nondiagonal in quantum numbers n and Λ. After 
separation of the electronic variables an effective 
Hamiltonian for nonsinglet electronic state n, treated 
up to the second order of perturbation theory, is 
presented in the form10,11: 
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where 
n

W�  is the effective potential,  

 = + + +� ad n.ad (s)( ) ( ) ( ) ( ).
n n n n n

W W r W r W r W r  (9) 

First term provides the Born-Oppenheimer 
potential, the second term arisen from the first order 
of the perturbation is the adiabatic correction to this 
potential:  

= + Π + −
µ

ad 2 2 2 21 1
( ) ( ) ( ) .

2 2
n r z

W r n P n n n B r n L L n
M

  

  (10) 

The nonadiabatic correction n.ad
n

W  appears in 
the second order of perturbation and includes the 
nondiagonal matrix elements of electronic operators. 

The quantity (s)
n

W  represents the correction to the 
potential due to spin-spin interactions. The last three 
terms in Eq. (8) produce Λ-doubling effects. The 
index n indicate the electronic state with quantum 
number n for which the effective Hamiltonian and its 
parameters are written. Formulas for the parameters 
of the effective Hamiltonian (8) are given in Refs. 6 
and 10. Thus, the equation (8) offers the effective 
Hamiltonian for nuclear motion in nonsinglet 
electronic state.  

In the literature, the unit-perturbation method 
(Refs. 6 and 9) is frequently employed for derivation 
of such a Hamiltonian. In this approach, the account 
for interactions with other electronic states is 
restricted to the interaction with one state. So, the 
interaction with other electronic state is replaced by 
second order corrections, which are found by Van 
Vleck transformation.6,8 The relations between 
parameters obtained using the unit-perturbation 
approximation and the parameters resulting from full 
contact transformation can be found in Ref. 10.  

After separating the electron variables the 
effective Hamiltonian (8) undergoes vibrational 
contact transformation. This provides an effective 
spin-rotational Hamiltonian for each vibronic state 
with the quantum numbers n and v. As a rule,6,8,10,12 
the effective Hamiltonian is developed in the Born-

Oppenheimer approximation neglecting the 
corrections in Eq. (9). However, it is possible to 
perform the contact transformation of the effective 
Hamiltonian (8) with the account of the deviations 
from the Born-Oppenheimer approximation. The 
consideration of adiabatic and nonadiabatic 
corrections in Eq. (8) do not affect the form of the 
vibrational and rotational energy but it gives small 
correction to the spectroscopic parameters.10,11,15,16 

In order to calculate energy in an analytical 
form one has to use certain parameterization of the 
potential function.11,17 More often the potential 
function of a diatomic molecule is presented by a 
power series expansion in the Dunham coordinate 
ξ = (r – re)/re or in non-dimensional normal 
coordinate q = β–1(r – re)/re. 

The expansion of the potential function may be 
presented in the following way  

 2 3 4

1 2

1
( ) ( ... ),

2
n

n
W q q q q q= ω + α + α + + α  (11) 

where ω ≡ ωe is the fundamental vibrational 
frequency (ñm–1); αn = Kn+2/ω  are the reduced 
anharmonic potential constants (non-dimensional); 
β = (2Bne/ωe)

1/2 is the reduced rotational constant. 
The radial dependence of the constants An(r), γn(r), 
λn(r), Bn(r), On(r), Pn(r), Qn(r) in the effective 
Hamiltonian (8) yields the appearance of the off-
diagonal, relative to the vibrational quantum number 
v, matrix elements. Therefore, the vibrational contact 
transformations are chosen so that they remove the 
off-diagonal matrix elements. As zero-order 

approximation the harmonic oscillator V

enH  and the 

rigid rotor R

0nH  are used  

 
ω= + + − + −2 2 2 2 2 2

0 e( ) {( ) ( )}.
2

n n z z
H p q B J J S S  (12) 

The remaining terms are treated as a 
perturbation, which is considered weak compared to 
the vibrational energy. After separation of the 
vibrational variables the resultant effective 
Hamiltonian for the spin-rotation structure is 
generally presented by its matrix elements in the set 
of basis functions corresponding to Hund’s case (a) 
coupling. These functions are denoted by 
| nvΛSΣ JΩM 〉, where | nv 〉 is the vibrational part; 
| ΛΣ 〉 is the electronic part, and | JΩM 〉 is the 
rotational part of the function. These wave functions 
are the eigenfunctions of the operators J2, S2, JZ, SZ, 
and LZ with the corresponding eigenvalues J(J + 1), 
S(S + 1), Ω, Σ, and Λ. However, the operator L2 is 
not diagonal in this representation. The phase 
conventions are chosen so that the matrix elements of 
the ladder operators J± and S± are defined as  follows: 

(8)

(7)
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1/2

1 ( 1) ( 1) ,J J J J±Ω ± Ω = + − Ω Ω ±  J    (13) 

 
1/2

1 ( 1) ( 1) .S S S S±Σ ± Σ = + − Σ Σ ±  S    (14) 

Note, that different authors use different phase 
conventions for the spin function (Refs. 6, 8, 13, 18, 
and 19). The matrix of the effective Hamiltonian for 
2Ï state evaluated in the set of basis functions 
corresponding to Hund’s case (a) coupling will have 
4 × 4 dimension. As known, the calculation of energy 
levels significantly depends on the choice of the basis 
set parity. Each of the wave functions may be 
classified as even or odd according to whether it 
remains unchanged or changes its sign upon inverting 
the space. The molecular Hamiltonian is invariant 
under inversion, and only the transitions between the 
states of the same parity will have nonvanishing 
matrix elements. In thus symmetrized basis set the 
matrix of effective Hamiltonian will consist of two 
non-interacting blocks, one for even and the other for 
odd-parity functions. If the wave functions of well-
defined parity (even or odd) are constructed from 
Hund’s case (a) functions than the matrix of 
Hamiltonian will be divided in two 2 × 2 blocks. 

To classify the states of heteronuclear diatomic 
molecules the C∞v molecular symmetry group is used, 
that consists of two elements, one of which is the 
inversion I(E*). The geometric symmetry operation 
σv(xz) (reflection from the xz plane), when it is 
applied to the electronic, vibrational, and rotational 
variables, is equivalent to the operation of inversion 
I(E*) in a space-fixed system of coordinates. 
Inverting the spatial coordinates the wave function 
| nvΛSΣ JΩM 〉 for 2Π state is transformed as follows18: 

 
( )

( 1) .

v

L S J

I nv S J M

nv S J M
−Λ+ −Σ+ −Ω

σ Λ Σ Ω =

= ± − − Λ − Σ − Ω
  

(15)
 

The expression (15) allows one to construct the basic 
wave functions of different parity as linear 
combinations: 

 
( )

1
( ).

2

nv S J M

nv S J M nv S J M

Λ Σ Ω ± =

= Λ Σ Ω ± − Λ − Σ − Ω
 
(16)

 

The wave function | nvΛSΣ JΩM + 〉 is defined 
even and corresponds to the sublevel “e” (or “ñ”), 
while the function | nvΛSΣ JΩM – 〉 is defined odd 
and corresponds to the sublevels ”f” (or “d”). 
Therefore, for each value of the quantum number J 
two wave functions can be constructed for the 
components | Ω | = 1/2 or | Ω | = 3/2 of the 2Π state. 
One of these functions will have the even parity and 
the other will have the odd parity. The matrix of the 
effective Hamiltonian will be split in two blocks for 
even “e” and odd “f” wave functions. For 
simplification the wave function (16) for each of the 
components | Ω | = 1/2 and 3/2 of the 2Π state will be 

written as Π 〉
2 ,

1/2| e f
nv JM  and 2 ,

3/2| e f
nv JMΠ 〉  

correspondingly. 

As a rule, the effective spin-rotational 
Hamiltonian of the 2Π state is represented by its 
matrix elements in a basis of symmetrized functions. 
Since different methods are employed in constructing 
the effective Hamiltonian, the matrix elements may 
have differences (Refs. 6, 8, 10, 12, and 20). In this 
paper, we present the matrix elements of the effective 
Hamiltonian constructed in the unit-perturbation 
approximation, in which only the interaction with 
one of the states Σ+ or Σ– is taken into account. Such 
a model is often used in processing the experimental 
data. Note, that the spin-spin interaction in the 2Π 
states equals zero and thus it is ignored in calculating 
the matrix elements. 

Diagonal matrix elements independent of 
quantum number J: 

 
, 2 eff 2 ,

1/2 1/2

e

| |

/2 /2 ,

e f e f

v v v v

nv JM H nv JM

T G A o
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(17)
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e
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 (18)
 

where Te is the electronic energy;  

 2 3

e e e e e( 1/2) ( 1/2) ( 1/2) ...
v

G v v y v= ω + − ω + + ω + +x   

  (19) 

is the vibrational energy; v is the vibrational 
quantum number; ωe, ωexe, ωeye are the spectroscopic 
vibrational constants. 

Diagonal matrix elements dependent on the 
quantum number J: 
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Off-diagonal matrix elements: 
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(3 1) (1/4)[ ( 1)]

1
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In all matrix elements the superscripts denote 
“e” levels, while the subscripts denote the “f” levels. 
For the sake of simplicity the following notation is 
used x = (J + 1/2)2 – 1. All the constants B, D, H, 
A, γ, p, q, and o are the functions of the vibrational 
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quantum number and thus are supplied with the 
subscript v:  

 Bv = Be – αe(v + 1/2) + … .  

Dv = De + βe(v + 1/2) + … , Hv = He + κe(v + 1/2) + …  

 Av = Ae + χe(v + 1/2) + … . 

Parameters pv, qv, and ov are the so-called Λ-doubling 
constants with their notation being a standard one.6 
These parameters appear in the Hamiltonian if the 
interactions of 2Π state with other electronic states 
are to be allowed for. Definitions of parameters pv, 
qv, ov are given in the Appendix 1. It is necessary to 
emphasize, that the matrix elements of effective 
Hamiltonian presented by Eqs. (20)–(22) are defined 
for the positive phase of the spin function (13) and 
for the model of unit perturbation. Change of the 
spin function phase and complete account for the 
interactions among the electronic states will change 
the formulas (20)–(22). The corresponding matrix 
elements for the effective Hamiltonian by Brown10 
are given in the Appendix 2. 

The effective spin-rotational Hamiltonian for  
the 2Π  state, which is presented by its matrix  
elements (17)–(22), is ambiguous. The ambiguity 

arises due to the possibility of unitary transformations 
eff ,iS iSH e H e−=�  which do not change eigenvalues, 

operator form, but considerably change its 
parameters. The existing ambiguity leads to strong 
correlation among the parameters of the effective 
Hamiltonian, which makes the processing of 
experimental data by use of this model too difficult. 
Reduced effective Hamiltonians are free of 
ambiguities. Different forms of reduced effective 
Hamiltonians have been used for diatomic molecules 
in 2Π state.10 

The eigenvalues of the effective spin-rotational 
Hamiltonian presented by Eqs. (17)–(22) are 
obtained by means of diagonalization of two matrices 
for even and odd states, which difference is caused by 
Λ-doubling. For each of the 2Π state components the 
rotational levels will be doublets with the subscripts 
“e” (+) and “f” (–). Since the matrices of the 
effective Hamiltonian are of 2 × 2 dimension, then 
the diagonalization can be made analytically and the 
resulting expressions for the vibration-rotation 
energies of diatomic molecule in the 2Π state can be 
written in explicit form21: 

2 2
e

2 4 2

1 2 2 2 1/2

( , , ) [( 1/2) ]

[ ( 1) ] [( 1/2) ( 1/2) 1]

( 1) [ ( 1/2) (1/4) ( 4 ) ]

( , ),

i i v v

v v

i
v v v v

i

E v J T G B J

B L L D J J

B J A A B

E v J

+

Λ

Ω = + + + − Λ +

+ + − Λ − + − + + +

+ − + + − Λ ±

±

 

where i = 1, 2 denotes the 2Π3/2, 
2Π1/2 states, 

respectively. The Λ-doubling energy terms ( , )iE v J
Λ  

are approximated by21: 

 Λ Λ= − + −1 2( , ) 2 ( 1/2) ( , ),E v J p J E v J  (24) 

 Λ
    
 = − − + −   
     

2

2 ( , ) 4 / 2 2 / 2 ,v v

v v

A A
E v J q p z

B B
 (25) 

 ( 1/2)( 1/2)( 3/2).z J J J= − + +  

The parameters Av, p, and q in equations (23)–
(25) are assumed independent of J and the effective 
spin-rotational constant γv is zero. 

Line intensities 

The intensity of an absorption spectral line Sa

b
, 

corresponding to a transition between the states 
a = {nvΛSΣ JΩiM} and b = {n′v′Λ′S′Σ′ J′ΩkM′} is 
proportional, in the dipole approximation, to the 
transition probability Wa→b, which is defined as 
follows:  

  2

aa b b ,ZW → = Ψ µ Ψ    (26) 

where Ψa and Ψb are the wave functions of the lower 
and upper states; µµµµZ is the dipole moment of the 
molecule in the space-fixed coordinate system. Since 
we consider vibrational-rotational transitions inside a 
degenerate 2Π electronic state, the conditions ∆Λ = 0, 
∆S = 0 hold for the transitions between “a” and “b” 
states. The interaction of the molecular rotation with 
the electronic motions lifts the prohibition for the 
spin projections (∆Σ = 0) and makes allowed the 
transitions between the components 2Ï3/2 ↔ 2Ï1/2. In 
the case of transitions between rotational levels the 
following selection rules should hold: ∆J = 0, ±1 and 
+ ↔ – or “e” ↔ “f” or “c” ↔ “d”.  

The component µµµµZ of the molecular dipole 
moment in the space-fixed coordinate system is 
related to the dipole moment µ(q) oriented along the 
molecular axis via the direction cosine ϕZ: 

 µZ = ϕZµ(q). (27) 

One can see that for evaluating the transition 
probability defined by Eq. (26), it is necessary to 
know the correct wave functions of lower and upper 
states and the dipole moment function of the 
molecule. The projection of the dipole moment in the 
molecular-fixed system is usually presented as a 
power series over normal coordinates. Therefore, the 
calculation of transition probabilities is quite a 
complicated problem, in which different formulations 
of perturbation theory are used to take into account 
the intramolecular interactions. As a rule, the so 
called Hönl-London factor SR is separated out in 
Eq. (26). This factor represents squared matrix 
elements of a direction cosine calculated with  
the account for summation over the magnetic 
quantum number. Often the Hönl-London factor is 
called the rotational line strength. The transition 
probability (26) may be written in the following 
form22: 

 2

à b ( , , , , ),R i kW S Ì v J v J→ ′ ′= Ω → Ω  

where M(v, J, Ωi → v′, J′, Ωk) is radial matrix 
element of the dipole moment in the molecular-fixed 
coordinate system: 

(23)
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 ( , , , , )i kÌ v J v J′ ′Ω → Ω = ′ ′Ω µ Ω( ) .i kvJ q v J    (28) 

Now two methods are realized for the 
calculating the transition probabilities of diatomic 
molecules in the 2Π state. Chronologically the first 
method realizes the formalism of effective operators: 
Hamiltonian and the operator of dipole moment. It 
allows one to relate, based on theory of 
perturbations, the parameters of the initial models of 
effective dipole moment deduced from fitting of 
experimental intensities to those of molecular dipole 
moment function. The transition probability (26) in 
such a method can be written22: 

 2 2

à b ( ) ( ),R v vW S Ì v v F m′→→ ′= →    (29) 

where M(v → v′) is the matrix element of the dipole 
moment over vibrational wave functions; ( )

v v
F m′→  is 

the factor that allows for the vibrational-rotational 
interaction, or the so-called Herman-Wallis factor22–25: 

 2( ) 1 ... ,v vF m Cm Dm′→ = + + +    (30) 

where 
 m = J′ = J + 1 for the R-branch, 
 m = –J′ = J – 1 = –J for the P-branch. 

Here C, D, and so on are the functions 
depending on the molecular constants and they are 
called the Herman-Wallis coefficients. We emphasize 
that with the increase of the difference between the 
upper and lower vibrational quantum numbers 
∆v = v′ – v, the order numbers of the contributions 
to be accounted for in the perturbation theory in 
calculating the transition probabilities also increases.  
 For the diatomic molecules in singlet states the 
analytical relations for calculating the transition 
probabilities with different ∆v have been obtained 
and realized in calculation algorithms for any 
overtones.17 Such an algorithm can be applied if the 
dipole moment function and the potential function of 
the molecule are known.  

Equation (29) is usually applied for data 
reduction while the parameters M(v → v′), C, and D 
are determined from experimental intensities using 
the least-squares fitting. 

In the case of molecules in the 2Π  state the main 
2Π1/2 → 2Π1/2 and 2Π3/2 → 2Π3/2 and satellite  
 

2Π1/2  2Π3/2 transitions are observed. In practice, to 
determine the intensities of both type of the 
transitions, Eq. (29) is used. The rotational line 
strengths are calculated in a basis set of wave 
functions of the effective spin-rotational Hamiltonian 
(Refs. 1, 21 and 26); the expressions for them are 
given in Table 2. 

To evaluate the radial matrix elements of the 
dipole moment the relations applicable to Σ   state of 
the molecule can be used. Such an approximation is 
applied when spin-orbit interactions has negligible 
effect on the transition moment.27–28 The expressions 
(29) and (30) are also valid for fitting the 
experimental data while parameters of the Herman-
Wallis factor are sought for each of the main 
transitions separately.29–32 

The neglect of influence of the orbital motion on 
the transition moments is justified for the quantum 
number J ≈ 15 because interaction between vibration 
and rotation is strong, but this influence can be 
important for low J values, like it was observed for 
OH molecule. The equations for the moments of the 
transition with ∆v = 1, 2 were first presented in 
Refs. 26 and 33. Consider in a more detail the 
application of formalism of the effective operators to 
evaluation of the transition probabilities for diatomic 
molecules in the 2Π  state.  

It is well known that the method of effective 
dipole moment24,34 significantly simplifies the 
calculation of the transition probabilities, because of 
replacing the calculation of matrix elements of the 
molecular dipole moment (26) over the exact wave 
function: 

 〈Ψa| µZ 

|Ψb〉 = eff 〈Ψa| µ∼ Z 
 

|Ψb〉 

eff  (31) 

by calculating matrix elements of the transformed 
dipole moment over the effective wave function. In 
the case considered here |Ψ(Ωi, J)|〉 

eff are the 
eigenfunctions of effective spin-rotational 
Hamiltonian presented by Eqs. (17)–(22) for 
2Π   state. The latter are written as expansion over 
wave functions of the state 2Π3/2 and 2Π1/2: 

 |Ψ(Ωi, J)|〉 

eff
 =

 

eff| e
i fv JΩ 〉  = 〉 Π Ω 〉∑ 2( ) | | .J e e

i v i if f

i

C v J   

  (32) 

 

Table 2. Hönl-London factor, or rotational line strength factor SR  

Vibrational-
rotational 

transitions 

Main subbands 
2Π3/2 → 2Π3/2 
2Π1/2 → 2Π1/2 

Ωi → Ωi 

Satellite subbands 
2Π1/2 ←→  2Π3/2, Ωi ←→  Ωk 

vJ → v′J + 1 
 R-branch 

( )2 2
1

1

iJ

J

+ − Ω
+

 { }/ /

' '( ) ( )
2

1 2 1 2
1 2 2 1 2 2

1 2 1 2

1
1 1

1

J J J J

v v v v ikC C J C C J
J

+ +   + − Ω − + − Ω   +
 

vJ → v′J – 1 

P-branch 

2 2

iJ

J

− Ω
 { }/ /

' '

2
1 2 1 2

1 2 2 1 2 2

1 2 1 2

1 J J J J

v v v v ikC C J C C J
J

− −   − Ω − − Ω     

vJ → v′J 
Q-branch 

( )

( )

2
2 1

1

iJ

J J

+ Ω
+

 { }' '( )

2

1 2 1 2

2 1

1

J J J J

v v v v ik

J
C C C C

J J

+
   Ω − Ω   +
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Indices ( )ef  correspond to notation of the even and 

odd functions; | v〉 are the wave functions of the 

harmonic oscillator; Π Ω 〉
2| e

i i fJ  are the symmetrized 

rotational wave functions; ( )i

J e
v fC  are the eigenvector 

coefficients appearing in the expansion of the wave 
functions derived from the diagonalization of the 
matrix of an effective Hamiltonian, i.e., from fitting 
of either line position or energy levels. Usually, Λ-
doubling is ignored in calculating the eigenvectors 
therefore no indices “e” or “f” is used for the 
eigenvectors.  

The explicit expressions for the effective wave 
functions have the following form: 

 
eff

2 2
1 23/2 1/2

| ( 3/2, )

| | 3/2 | | 1/2 ,J J
v v

J

C v J C v J

Ψ Ω = 〉 =

〉 Π Ω = 〉 + 〉 Π Ω = 〉
 

eff

2 2
1 21/2 3/2

| ( 1/2, )

| | 1/2 | | 3/2 .J J
v v

J

C v J C v J

Ψ Ω = 〉 =

= 〉 Π Ω = 〉 − 〉 Π Ω = 〉
 

Analytical diagonalization of the effective 
Hamiltonian matrix allows one to obtain explicit 
expressions for the eigenvectors of this matrix, in 
which Λ-doubling is neglected1,21:  

 = − +  
1/2

1 ( 2 / )/2 ,J
v v v v vC X A B X  

 = + −  
1/2

2 ( 2 / )/2 ,J
v v v v vC X A B X   (34) 

 ( ) = + + − 
1/2

24( 1/2) / / 4 .v v v v vX J A B A B  

The effective dipole moment operator µ� Z  in 
Eq. (31) is related to the projection of the dipole 
moment µµµµZ by the same unitary transformation as 
those applied to the vibrational-rotational 
Hamiltonian of the molecule Í: 

 2 1 1 2
.

iS iS iS iS
Z Ze e e e

− −µ = µ� … …   (35) 

Here the generators S1 and S2 are the 
transformation operators. Since the transition 
probability for diatomic molecules can be separated 
in the rotational line strength and radial matrix 
element (28), it is possible to apply the 
transformation to radial matrix element evaluation to 
avoid a complicated commutation of rotational 
operators with direction cosines.  

Thus, the evaluation of radial matrix element is 
replaced by an evaluation of the matrix elements of 
an effective dipole moment over the wave functions 
of the harmonic oscillator  

 ( , , , , )i kÌ v J v J′ ′Ω → Ω = 0 0( , , .iv J J v′ ′〈 µ Ω 〉�| |   

Like for the Hamiltonian one considers k-times 
transformed dipole moment operator and recovers 
terms of different order according to the ordering 
scheme. The effective dipole moment operator is 
expanded in a series over powers of the small 
parameter λ: 

 
′ ′µ Ω = + λ Ω +

′ ′+ λ Ω + + λ Ω

��

� �

0 1

2

2

( , , ) ( , , )

( , , ) ... ( , , ).

i i

n
i n i

J J M M J J

M J J M J J
  

(36)
 

The use of the contact transformation in the 
representation of creation a

+ and annihilation a 

operators for the normal mode vibrational modes 
allows one to present Eq. (35) in a form of 
“overtone” expansion17,24, where each operator for 
“overtone” number n has nonvanishing matrix 
elements with the fixed difference ∆v = n. So, to 
obtain the radial matrix elements for transitions 
(vJΩi) → (v + ∆vJ′Ω i) it is quite sufficient to 
construct the operator of the nth “overtone.” 

The one-time transformed dipole moment 
operator ( , , )iJ J′µ Ω�  for 2Π state was considered in 

Ref. 26 and the formulas for radial matrix elements 
for the bands with ∆v = 1, 2 were written. The spin-
orbit interactions were taken into account in the 
calculations (Appendix 3). Relations presented in 
Ref. 26 for radial matrix elements could be easily 
presented as the transition moment for the band 
under study and Herman-Wallis factor with the re-
determined values of m. 

The second method used for evaluation of the 
transition probabilities is realized through numerical 
calculations.35,36 The exact wave functions for 2Π1/2 
and 2Π3/2 states are determined by numerically 
integrating two coupled Schrödinger equations.37,38 In 
this scheme different presentations of the potential 
function can be used. It was found that the most 
precise rovibrational wave functions are derived by 
use of the vibrational RKR potential (Rydberg–
Klein-Rees).28 In addition, the ab initio dipole 
moment surfaces or Pade representation of the dipole 
moment function ensure the calculations of transition 
probabilities.28 Such numerical calculations of line 
position and intensities for diatomic molecules in the 
2Π state are included in well-known databases 
HITRAN and HITEMP. 

Conclusion 

In this paper known methods and models used 
for theoretical treatment of vibrational-rotational 
spectra of diatomic molecules in the 2Ï state have 
briefly been reviewed. The author was not intended 
to point out the best of them, since the specific 
character of a problem and a molecule determines the 
choice of a proper model. It should be noted, that 
available model of the effective Hamiltonian allows 
one to determine the energy levels with the 
experimental accuracy including Λ-doubling for v = 0 
(J ≈ 60, 5) and v = 22 (J ≈ 35, 5) for the NO 
molecule, while for the OH molecule the range is up 
to v = 10 and J ≈ 35, 5. The main problem in the 
line intensity calculations remains the dipole moment 
function. It is known, that up to now the ab initio 
calculations of the dipole moment surfaces did not 
allow one to reproduce the intensity values with the 
experimental accuracy. Therefore, in fitting the 

(33)
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observed intensities the model presented by 
expression (28) is used, which provides experimental 
accuracy of the presentation and physically clear 
interpretation of the interactions occurring in the 
molecule. 

 

Appendix 1 

ΛΛΛΛ-doubling parameters caused by interactions 
between 2ΠΠΠΠ and 2ΣΣΣΣ±±±±-states 

 Π +

′ ′′ ′

′ ′〈 Π Σ 〉=
−∑

222

,

1 | ( ) |
;

2
v

nv J n v Jn v

n vJ A r L n v J
o

E E
 

 Π + +

′ ′′ ′

′ ′〈 Π Σ 〉〈 Π Σ 〉=
−∑

2 22 2

,

| ( ) | | ( ) |
2 ;v

nv J n v Jn v

n vJ A r L n vJ n vJ B r L n vJ
p

E E
  

 
22 2

,

| ( ) |
2 .v

nv J n v Jn v

n vJ B r L n v J
q

E E

Π +

′ ′′ ′

′ ′〈 Π Σ 〉=
−∑  

Appendix 2 

Matrix elements of the effective  
spin-rotational Hamiltonian by Brown10 

Diagonal matrix elements independent of 
quantum number J: 

 

, 2 eff 2 ,
1/2 1/2| |

;
2

e f e f

v
e v v

nv JM H nv JM

A
T G

〈 Π Π 〉 =

= + − − γ
  

 
, 2 eff 2 ,

3/2 3/2| |

/2.

e f e f

e v v

nv JM H nv JM

T G A

〈 Π Π 〉 =
= + +

  

Diagonal matrix elements, which depend 
on the quantum number J: 

, 2 eff 2 ,
1/2 1/2

2

| |

( /2)( 2) ( /2)(3 4)

[( 1)( 4)] [( 1)( 8 8)]

1
{ ( 2)}( 1/2)

2
1
{ (3 4)}( 1/2);

2

e f e f

v Jv Jv

v v

v Jv

v Jv

nv JM H nv JM

B A x x

D x x H x x x

p p x J

q q x J

〈 Π Π 〉 =
= − + − γ + −

− + + + + + +

+ + +

+ + +

∓

∓ ∓

∓

  

 

, 2 eff 2 ,
3/2 3/2| |

( /2 /2) [( 1) ]

1
[ ( 1)( 2)] { ( 1/2)}.

2

e f e f

v Jv Jv v

v Jv

nv JM H nv JM

B A x D x x

H x x x q x J

〈 Π Π 〉 =
= − − γ − + +

+ + + +∓

  

Off-diagonal matrix elements: 

 

2, 2 eff ,
3/2 1/2

1/2

| |

{ /2 (1/2) ( 2) 2 ( 1)

( 1)(3 4) (1/4) ( 1/2)

(1/2)[ ( 2)]( 1/2)}( ) .

e f e f

v v Jv v

v Jv

v Jv

nv JM H nv JM

B x D x

H x x p J

q q x J x

〈 Π Π 〉 =
= − + γ + γ + + + −

− + + ± + ±

± + + +

  

Designations are the same as in the text. The 
superscript corresponds to “e” levels, the subscript is 
for “f” levels. 

Appendix 3 

Radial matrix elements for transitions between 
2ΠΠΠΠ i and 2ΠΠΠΠk components of 2ΠΠΠΠ state 

( )3

1 0

( 1)
( , , 1, , ) { },

2
i i i i

v
Ì v J v J F F

+′ ′Ω → + Ω = µ + µ β −  

 

Ω → + Ω =

+ ′= µ + µ β − + µ − ω

'

3

1 0 0 1

( , , 1, , )

( 1)
{ ( ) ( 1) /2 },

2

i k

i
i k

Ì v J v J

v
F F A

 

 

′Ω → + Ω =

′= + + µ + µ α + β − −

′ ′− µ β − α β − + β −

3

2 1 1

4 3 6 2

0 1

( , , 2, , )

1
( 1)( 2){ [ ( )]

2

3
( /2)[( )( ) ( ) ]},

2

i i

i i

i i i i

Ì v J v J

v v F F

F F F F

 

 

′Ω → + Ω =

′= + + µ + µ α + β − −

′ ′− µ β − α β − + β − −

− µ ′− + α − β −
ω

3

2 1 1

4 3 6 2

0 1

30

2 1 1 1

( , , 2, , )

1
( 1)( 2){ [ ( )]

2

3
( /2)[( )( ) ( ) ]

2

( 1)
[ ( )]},

2

i k

i k

i ik k

i

i k

Ì v J v J

v v F F

F F F F

A A A F F

 

where 

 1/2, ( 1),i iF f f J J= − Ω + = +  

 1, 3/2, 2, 1/2.i ii i= Ω = = Ω =  
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