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The small angle approximation of the radiative transfer equation is one of the most efficient
methods of solving applied problems of atmospheric and ocean optics. The analytical complexity of the
radiative transfer equation (RTE) has allowed formulating only primary, qualitative estimates of
the accuracy and applicability domain of the small angle approximation (SAA). Another approach
based on the comparison of the SAA calculations of light fields with similar numerical RTE solutions
is also possible. However, numerical methods of RTE solution for the cases of media with strong
anisotropic scattering are inefficient. The approach proposed in this study can be readily generalized
to the cases of arbitrary boundary conditions.

It is a peculiarity of formation of any natural
turbid media that the size of suspended particles is
much larger than the light wavelength. According to
the Mie theory, this leads to the strongly anisotropic
scattering. Difficulties of analytical and numerical
solution of the boundary-value problems of the
radiative transfer equation (RTE) in the case of
anisotropic scattering initiated the development of
specialized approximate methods, which altogether are
referred  to as  the small angle approximation (SAA).1

The radiation transfer through a turbid medium,
either atmosphere or seawater, is a particular case of
transfer phenomena, described by the equivalent
equations, but with the parameters of media having
different physical meaning. Any process, characterized
by the local compactness,2 is described by the equation,
fully analogous to RTE. Therefore, the methods for
solution of both the transfer equations in general and
RTE in particular are developed by specialists in
various fields of physics.

Today SAA is one of the most powerful methods
for solution of applied problems in atmospheric and
ocean optics.1 This causes the importance of
considering its accuracy and applicability, as of any
approximate method. However, analytical difficulties
in RTE solution have allowed the formulation of any
primary, qualitatively illustrative estimates.1 Another
approach is also possible here, namely, the comparison
of light fields in a turbid medium, calculated in SAA,
with the analogous numerical RTE solutions. However,
most numerical methods also face serious difficulties
in solving RTE for media with strongly anisotropic
scattering, which does not allow the SAA accuracy to
be estimated. In Ref. 3, we have proposed a numerical
solution of RTE for turbid media with arbitrary
scattering anisotropy under the exposure to radiation
from a plane unidirectional (PU) source, which opens
the possibility of solving the problem formulated.

Consider the boundary-value problem of RTE for
the PU source at the arbitrary angle of irradiation of
a semi-infinite layer of turbid medium
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where ( , , ) ( , )τ µ ϕ ≡ τL L l is the brightness of the light

field at the optical depth τ = εz in the direction
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Λ is the single scattering albedo; ε is the extinction

coefficient; ( , )′x l l  is the scattering phase function of
the medium;

, ( , )⊥= µ + µ =0 0 0 0 0l z l l z

is the direction of radiation of the PU source. The
axis OZ is perpendicular to the layer boundary; z  is
the unit vector in the direction OZ. The symbol “∧”
denotes the unit vector.

SAA was first formulated in the studies of
propagation of a flux of elementary particles through
matter, which have led to the creation of a planetary
model of an atom by Rutherford. The following problem
appeared in this case: if the angular distribution of α-
particles corresponded to the single scattering phase
function of particles by a nucleus and confirmed the
Rutherford model, then β-particles had the Gaussian
angular distribution, which corresponded to the model
of J.J. Thompson. In Ref. 4, it was supposed that β-
particles experience multiple scattering events, and the
equation was proposed for calculating scattering of
arbitrary multiplicity in the problem (1), which can be
written, in the terms of optics of turbid media, as follows:
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In the case of n scattering events, the ray
trajectory is a broken line of n + 1 segments. The
optical length and the direction of each of n first

segments from the PU source are denoted as ζi and il ,
respectively. The length of the last segment, adjacent
to the detector, is

=

ξ = τ µ ζ∑
1

/ – .
n

k
k

Since the scattering of electrons within the matter
is strongly anisotropic, we can neglect, at small
angles,4 the variance of the path length of the scattered
rays
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which, after substitution into Eq. (2), allows Eq. (3)
to be transformed as
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Whence the full brightness of the light field is

–

( , ) ( , )

( )
!

... ( , ) ... ( , ) ...

( ) ( )
!

0

0

0

0

0

2 1 1

0

0

1
4

d d

.

n
n

nn

n

n n

n

n

n
n

L L

e
n

x x

e
n

τ µ

τ µ

τ τ

Λτ µ
π

Λτ µ
Φ

1442443
Ñ Ñ

l l

l l l l l l

l

=

=

-

=

= =

=

   =

=

It can easily be seen that the small angle
approximation is equivalent to the transformation of
RTE (1) to the form
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It is seen from Eq. (4) that the central problem
in the small angle approximation is the calculation of
the multidimensional convolution over the solid angle

on the sphere ( ).Φn l  Three main ways for solving this
problem are possible.

In the historically first proposed approach,5 it was
postulated, based on the findings of the probability
theory, that the multidimensional convolution of
smooth functions tends to the normal distribution.
This postulate was rigorously proved in Ref. 6. Let

us present the field brightness in the direction ′l  by
a Taylor series
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Then substitute this series into the scattering operator
in RTE (5) with the first three terms kept on the
assumption that the scattering phase function stronger
depends on the angle than the brightness body. Thus,
RTE (5) is reduced to the equation of the Fokker–
Planck type (diffusion approximation):
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whose solution is a gaussoid in terms of the sighting
angle. Here
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∇n
l  is the gradient in the space of sighting directions;

κ = (1 – Λ)ε is the absorption coefficient.
The additional assumption on the high anisotropy

of the scattering phase function in comparison with
the brightness body strongly smoothes all peculiarities
of the solution and is valid only for small angles in
the deep light regime. This fact has found the
confirmation in the experiments with electron beams,
and in Ref. 7 the authors tried to refine the solution
to large angles, by "sewing" it with the single
scattering approximation.

In Ref. 8, the second form of SAA was proposed,
based on the summation theorem for Legendre

polynomials. If ( , )0L r l  and ( )′⋅x l l  are presented by
the series expansion over of spherical functions:
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then for a PU source the equation for convolution
takes the form
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The third form of SAA was proposed in Refs. 9–
12. In this form, along with the neglect of the path
variance, it is assumed that, within small angles, the
convolution on a sphere (rotation) can be replaced by

the convolution on a plane, tangent to the sphere at 0l
(plane shift):
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Upon the transition to Fourier transforms of

( , )0L z l  and x(l⊥ – l⊥′ ), according to the convolution
theorem for the case of a PU source, we obtain
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where J0(⋅) is the first-kind zero-order Bessel function.
In Refs. 13 and 14, the relationship between the

three forms of SAA was considered and their accuracy
was compared. It was shown that the second form is
the most consistent and accurate, because it neglects
only the path variance of scattered photons, but does

not allow the extension to other sources, because ( )0L l
is independent of ξ due to the symmetry of the PU
source. The third form follows from the second one
with the restriction to small angles, when rotations on
a sphere can be replaced by transformation of a plane:
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The transition from the second and third SAA
forms to the first one is based on the expansion of xk

or x(k) into the Taylor series with the first three terms
kept. It should be noted that the representation (3) is
inconsistent with the exact boundary conditions,14

and SAA neglects backscattering in the boundary
conditions.

Though the most complete SAA form is the
second form,8 as all other forms follow from it, the
analytical form of the third SAA form10–12 appeared
to be the most fruitful for solution of many applied
problems.1 In Ref. 15, this form of SAA was extended
to the vector case of accounting for the particle spin,
which is equivalent to the account for the transfer of
polarized radiation in optics. However, the extension
of the second SAA form is possible, which allows its
limitations to be lifted.

In the boundary-value problem (1), let us pass on
to the system of differential equations of the method
of spherical harmonics,3 but in the system with

respect to the direction of radiation incidence .0l  To
do this, represent the solution in the form
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Substitute Eq. (13) into Eq. (1), multiply it by

Q ( ) ,m im
k e ϕν  and integrate over the total solid angle.

Taking into account the orthogonality, recurrence
relations, and the summation theorem for the Legendre
polynomials, we obtain a system of connected
differential equations:
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The system obtained differs from that commonly
accepted in the method of spherical harmonics (SH)
for a PU source3 by a different coordinate system in
the space of directions of sighting of the brightness

referred to the axis ,0l  instead of .z
For the further solution, let us take the

following assumptions based on the concept of strong
anisotropy of the brightness body.

1) Introduce a continuous dependence of the
coefficients of the series (13) on the numbers of
harmonics ( ) ( , ),m m

kC C kτ = τ which is a slow monotonic
function due to the angular anisotropy. Thus, the
following representation is possible:

( , )
( , 1) ( , ) .

m
m m C k

C k C k
k

∂ τ
τ ± ≈ τ ±

∂
 (15)

2) The main contributors to the series (13) are
the terms with the numbers k >> 1, and the degree of
anisotropy is much higher than its azimuth asymmetry
k >>m, which allows one to assume that:
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where the following designation is introduced:

( 1).k kκ = +
Substituting these expressions into Eq. (14) and

replacing k with κ, we obtain
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In Eq. (16) with regard for the condition k >> 1
and the assumption of the slow monotonic dependence
of Cm on the k number, the term with the second
derivative is rejected as a small parameter. From the
form of Eq. (16), it is seen that, unlike the SAA,8 in
which the system of equations of the SH method
"breaks out" into independent equations for each of
the harmonic coefficients, here the equations are
interconnected, which is more adequate to the process
of radiative transfer in a medium.

Introduce the function ⊥τ 0( , , )f l κ  so that its
azimuth spectrum is equal to the function sought:
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Multiply Eq. (16) by eimψ and sum up over m
from –∞ to +∞. Then, based on the properties (18),
we obtain the equation

( )
1 1 1

( 1) ( 1)
m m

m m im

m

C C
m C m C e

∞ + −
ψ

=−∞

 ∂ ∂
+ + + − − ∂κ ∂κ κ 

∑ =

sin
2 cos

f f ∂ ψ ∂
= ψ − = ∂κ κ ∂ψ 

02( , ) ,f⊥ ∇l κ

which makes the Eq. (16) to read

0 0 0( , ) (1 ) ( , , ).kf f x fκ⊥ ⊥
∂

µ + ∇ = − − Λ τ  ∂τ
l l κ  (19)

Let us present the solution of Eq. (19) in the form
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where u0 is an arbitrary function, determined from the
boundary conditions.

The boundary conditions in the boundary-value
problem (1) include the δ-function in terms of the
sighting angle, which means 0 0

( , , ) 0.F z ⊥ κ→
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Whence u0 = 0, and the solution of Eq. (19) finally
takes the form
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Correspondingly, for the coefficients of harmonics
we obtain
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The Henyey–Greenstein scattering phase function
is often used in applications. In this case, xk = gk and
the internal integral in Eq. (23) takes the form
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The solution obtained is a small-angle

modification of the method of spherical harmonics
(MSH) and an extension of the second form of SAA,
into which it transforms at µ0 → 1. The MSH can be
easily extended to the cases of an arbitrary radiation
source.16–18 The analytical form of MSH as a series in
terms of spherical functions is much more convenient
in numerical calculations, than the calculation of the
improper integral in the SAA form.9–12 The scattering
phase function of the medium enters into the solution
in the form of the coefficients of expansion in terms
of the Legendre polynomials, which allows one to
directly use their values from the model of optical
characteristics of the medium and the Mie theory19

without additional approximations.
Taking into account that the associated Legendre

polynomials are connected with the Bessel functions
of arbitrary order, we can show, as in Ref. 18, that
for small sighting angles Eq. (19) is equivalent to the
reduction of RTE to the form

(16)

(23)

(21)
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( , ) ( , ) ( , ) ( , ) ,0 0⊥ ⊥ ⊥ ⊥
∂ ∂

∇ = + ∇ ≈ µ +  ∂τ ∂τ
l l z l l l  (24)

where ⊥ ⊥∇ , l  are the gradient and projection of l  in

the direction, perpendicular to .0l
If we use the third form of the SAA, then after a

Fourier transform with the allowance made for the
ratio between the expansion in terms of spherical
functions and the Fourier transform18 we obtain the
equation equivalent to Eq. (19). However, Eq. (24)
shows that the solution (23) obtained should allow
the description of the rotation of the brightness body
from the direction of incidence in the near-surface
layer to the vertical direction in the medium depth.
If we examine Eq. (4), defining the physical content
of the small angle approximation, then we can see
that this rotation of the brightness body is taken into
account in MSH in calculating the convolution

( )nΦ l . The neglect of the path variance of the

scattered rays remains, as follows from Eq. (23), and
it is easy to illustrate analytically with the spatial
irradiance in the case of the Henyey–Greenstein
scattering phase function as an example:
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0 0dE L Cτ τ µ ϕ τÑ l= = =

0
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τ Λ

µ
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-
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It can easily be seen that, as compared with
Ref. 8, MSH leads to a decrease in the effective Λ in
the medium upon the increase of the angle of incidence
or the effective path length of light absorption.

To determine the accuracy and the applicability
domain, we have compared the light fields calculated
by Eq. (23) and by the numerical method from Ref. 3
with the widely varying optical and geometrical
parameters of the medium.
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Fig. 1. Brightness body of the light field in a turbid medium (Λ = 0.8, g = 0.97, τ = 15): (à) θ0 = 0°, (b) θ0 = 50°.
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Fig. 2. Rotation of the maximum of the brightness body in a turbid medium (g = 0.97, θ0 = 50°) with the depth: Λ = 0.8 (à)
and 0.99 (b).
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a b
Fig. 3. Amplitudes of harmonics of the angular spectrum of the brightness body in a turbid medium (Λ = 0.8, θ0 = 50°) as
functions of the number: g = 0.97, τ = 10 (à); g = 0.7, τ = 1 (b).

Figures 1 to 3 compare the light fields calculated
in a turbid medium in the small angle approximation
with the exact numerical calculation by the method
from Ref. 3. The exact solution is shown by the solid
line, the solution by the MSH is shown by the dashed
line, and SAA is shown by dots, while the dot-and-
dash line shows the modification of the diffusion
approximation with partial account for the variance
of ray trajectories.1 Analysis of the dependences shown
allows the following conclusions to be drawn:

1. The applicability domain of the small angle
approximation is the whole forward hemisphere of
sighting angles, and therefore the term "small-angle"
reflects the idea of the assumption, forming the basis for
this approximation, rather than its applicability domain.

2. The change of the optical characteristics of the
medium (increase of Λ or decrease of the scattering
anisotropy) narrows the applicability domain, but it
rather well describes the solution in the range of either
smaller angles or smaller optical depths. The range of
validity of the MSH is determined by the requirement
of anisotropy of the brightness body, when the main
contributors are higher harmonics, rather than the
scattering anisotropy.

3. Consequently, the MSH has an intermediately
asymptotic, rather than asymptotic character, when
the approximate solution approximated the exact one
virtually everywhere in its range of definition.

4. The diffusion approximation with the allowance
for the variance of the ray trajectories1 rather well
describes the integral parameters of the field, while
being unsuitable for the description of the brightness
body (converges on average, but does not in uniform
metrics).

5. The MSH is the most general form of the small
angle approximation, all other forms follow from it in
the case of small sighting angles or strong scattering
anisotropy.
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