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A possibility to forecast the climatic characteristics with the use of wavelet transform is 

described. The wavelet transform of the time series of climatic characteristics reveals the quasi-
periodicity for different time scales. The forecast of the sought time series is constructed based on the 
forecast of much  simpler quasi-periodic functions of wavelet coefficients.  

 
The analysis of accumulated observational series of 

some parameters of the regional climatic system shows 

that annually mean values of these characteristics 
demonstrate some regular changes.1,2

 Along with 

conclusions following herefrom on the complex 

monitoring of the observed climatic changes, the 
obtained results are also useful for predicting these 
changes. Such a forecast based on the analysis of 
empirical evidences can be referred to as formal and 
not claiming for consideration of physical mechanisms 
of the observed changes. Nevertheless, with a properly 
chosen method of statistical analysis, we may expect 
a reliable prediction of evolution of the observed 
changes for the nearest years.  

In the time series, from the viewpoint of forecast, 
latent quasiperiodic variations on different scales, as 
well as a long-term trend are informative. If after 
removal of the trend from the original series, the 
remainder meets stationarity, then in the forecast 
(forward extrapolation) we may use a mixed model of 
autoregression and moving average (ARIMA).3 In 
this model, the time sequence element X(t) is expressed 
through the previously known elements of the same 
sequence: 
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where p and q refer to the model order; β1, …, βp, 
α1, …, αq are the ARIMA model parameters; ε(t) is 
the white noise. The forecast peculiarity here is the 
following: in practice, the model order is not set large 

(not exceeding ten) and therefore, the information on 
the variation structure of the whole series, especially 
the series, which is a system of nonlinear periodicities, 
is poorly taken into account. 

The studies of a variation structure often invoke 
the Fourier transform, the mathematical tool useful 
for the frequency signal analysis, but ineffective in 
the processing of complex signals. In particular, the 
Fourier transform fails to analyze local properties of 
signals, because the basic functions of the Fourier 
transform are defined throughout the all time axis. 

Nevertheless, there exist procedures that allow the 
forecast by calculating the sum of the harmonic 
constituent series of individual components of narrow 
peaks in the Fourier spectrum.4 

Here we consider a new approach to the 

forecasting connected with the use of wavelet 
transform of observational time series. The wavelet 
transform of a signal5 is the signal resolution in the 
basis formed by a special function (wavelet) with 
certain properties by means of scale variations and 
transfers. Thus, one-dimensional signal is projected 
onto a time–frequency plane in the form of a two-
dimensional distribution of coefficients of a continuous 
wavelet transform 
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where W(a, b) are the wavelet transform coefficients, 
f(t) is the function of interest, t is the time, ψab(t) is 
the wavelet, a stands for the scale magnitude; b is 
the shift on the time axis; and asterisk denotes the 
complex conjugation. 

The transform inverse to Eq. (2) looks like 
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where Ñψ is the normalizing coefficient. 
Equations (2) and (3) for a discrete case are 

given in Ref. 6. Wavelet transforms of temperature 
series7 and some geophysical indices8 have shown that 
the distribution W(a, b) is characterized by quasi-
periodical structures of different time scales. The idea 
of the suggested approach consists in the following. 
Prediction is made for simple smooth quasi-periodical 
functions ϕa(b) = W(a, b) on different scales a, rather 
than for the original function f(t), and then the latter 
is restored using Eq. (3). For each function ϕa(b),  
we fix local minima and maxima. The extrapolation 

procedure for ϕa(b) consists in determining both the 

time position of a next maximum/minimum (as an 
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average interval for a given series) and its numerical 
value (by using the linear polynomial). The values of 
the wavelet coefficients for the range between the 
maximum and minimum are filled in with the help  
of a cubic spline. Confidence intervals are evaluated 
by calculating the upper and lower quantiles of the 
empirical  function  of  remainder  series  distribution. 

Values for the scale a were chosen according to 
Ref. 6, that is, on the basis of the quantization 
procedure by the power of two: 

 δ= 02 ,
j j
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where a0 is the smallest possible scale (a0 = 2δt, δt is 
the interval between two neighbor time points in the 
original time series), δj stands for the accuracy of 
discrete realization of the continuous wavelet 

transform (in these examples it was 0.1). 
The first step in implementing this approach is a 

choice of the wavelet type. The analysis of temperature 
series in Ref. 7 and 8 shows that to educe the scales 
of oscillations and temporal localization of extremes 
in the series, it is reasonable to choose the Morlet 
wavelet. 

In choosing the wavelet form, we used 

f(t) = sin(t), t ∈  [0; 0.1π; …; 18π] as a test function. 
For this function, the wavelet coefficients of the 
Morlet wavelet have a clear quasi-periodical structure 
with some distortions at the beginning and the end of 
the considered time interval. These distortions are 
connected with the time boundedness of the original 
series. In case a biorthogonal wavelet9 is applied, the 
distortions at the ends are reduced significantly, 
however, some diffusiveness on the scales greater than 
2π increases. Further, using the values of the wavelet 
transform coefficients, we made a forecast into the 

region t ∈  [18.1π; 18.2π; …; 20π], and reconstruct the 

original function by Eq. (3). Analysis of the forecast, 
performed with the considered wavelets, shows that at 
comparable estimates of reconstructing of the test 
harmonic function on the interval t ∈  [0; 0.1π; …; 18π], 
the biorthogonal wavelet gives a lower prediction error. 

Taking into account this fact, we have forecasted 
two actual observational series. The first series 

included the annual mean Wolf numbers for the  
period from 1700 to 2003. This series characterizes 
solar activity and, to some extent, solar–terrestrial 
relationship, and shows on average an 11-year regular 
alteration of maxima (minima). As the initial series, 
we have chosen a Wolf number series for the period 
from 1700 to 1978 and forecasted it for 1979 to 2003. 
The result is shown in Fig. 1a, where a solid curve 
refers to observations, a dashed curve is the forecast 
made using a biorthogonal wavelet, and a dotted curve 
is the ARIMA-model forecast. Vertical straight lines 
refer to 90% confidence intervals for the forecast  
by the wavelet transform. It follows from Fig. 1a 
that the forecast made by the wavelet transform gives  
much more accurate results than the ARIMA forecast. 

Figure 1b illustrates the forecast of the Wolf 
numbers for the period 2004–2015 using the 

biorthogonal wavelet (dashed curve). The 90% 

confidence interval does not exceed 15 Wolf units. 
For comparison, we present a forecast10 for 2004–
2007 as a dotted curve, obtained by McNish and 
Lincoln method11 with allowance for regression 
coefficients and average Wolf numbers for one cycle. 
The original data for the forecast were the Wolf 
numbers for cycles from 8th to 20th. The 90% 
confidence interval did not exceed 20 Wolf units. 
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Fig. 1. Test of the Wolf number forecast (1979–2003). 
 

Figure 2 shows the forecast of monthly mean values 

of the ground pressure for the Omsk meteostation for 
the period from January 2002 to December 2004 with 
a 90% confidence interval not exceeding 5 millibar. 
This forecast interval was based on the available data. 

Another object of investigation was a series of 
annual mean temperatures for Omsk for the period 
1916–2002. Taking into account that the last decades 
in Siberia were characterized by a significant positive 
temperature trend, we discriminated from the original 
series the trend represented by a cubic polynomial. 
We applied the above forecasting procedure to the 
modified series and added the results to the trend 
values forecasted by the cubic polynomial. The result 
is shown in Fig. 3, where the solid line refers to 
actual observations, and the dashed line is the forecast 
for 1995–2005. The 90% confidence interval does not 
exceed 0.5°C. 
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Fig. 2. Forecast (dashed line) of atmospheric pressure for 
Omsk using the wavelet transform. 
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Fig. 3. Actual observations of the annual mean temperatures 
in Omsk (solid line) and their forecast for 1995–2005 
(dashed line). 

Figure 3 allows a number of conclusions. The 

interval 1995–2002 shows a good agreement between 
the forecast and the observations. There is almost 
complete quantitative agreement for the odd years, 
and there is some discrepancy for the even years most 
strongly expressed in 1996. We believe that the 
reason for these discrepancies is in the fact that 
besides quasi-periodic variations and the trend, the 
temperature series demonstrates some variability with 

characteristics approaching a random process. Such 
variability in the distribution of the wavelet transform 
coefficients definitely contributes to the region of 
small wavelet coefficient values (compared to 

numerical values of peaks), which adversely affects 
the prediction of the wavelet coefficients. 
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