
338   Atmos. Oceanic Opt.  /May–June  2005/  Vol. 18,  Nos. 5–6 M. Anisimov et al. 
 

0235-6880/05/05–06  338-06  $02.00  © 2005 Institute of Atmospheric Optics 
 

 
 

Nucleation research progress for description  
of atmospheric aerosol dynamics.  

2. Nucleation rate surface for water vapor 
 

M. Anisimov, L. Anisimova,1 P. Turner,2 and Ph. Hopke3 
 

Institute of Chemical Kinetics&Combustion,  
Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia 

1Nucleation Laboratory, Institute of Catalysis,  
Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia  

2Mathematics and Computer Science Department, Clarkson University, USA 
3Department of Chemical Engineering, Clarkson University,  USA 

  
Received January 20, 2005 

 
General computer algorithm for constructing the nucleation rate surface is developed. 

Algorithm is applicable in case of water vapor nucleation. Results can be used in calculations of the 
water vapor nucleation in atmosphere. An obvious advantage of the computer semi-empirical 
construction of nucleation rate surfaces is the ability to construct this surface over the whole interval 
of nucleation parameters that is impossible in experiments. Examples of hard-to-reach conditions 
include very low temperatures, media with high-pressures and/or very high-temperature (such as 
stars), etc. It is assumed that the current algorithm can be further developed for semi-empirical 
construction of nucleation rate surfaces for one- and two-component systems. 

 

Introduction 

During the past half-century, classical 
nucleation theory (CNT) has been developed, and 
there appear noticeable advances in the molecular 
theory of nucleation. Most efforts were directed 
towards modeling small molecule systems using 
intermolecular potentials. Summarizing the state of 
the nucleation theory, it can be concluded that it is 
far from complete. It is possible to successfully 
describe nucleation using sufficiently simple models 
of simple real systems.1 However, up to now, 
experimental data and theory often disagree, and in 
the best cases, show their agreement only in narrow 
intervals of nucleation temperatures. The available 
nucleation data represent small islands in the total 
field of nucleation conditions: from the critical 
temperature to absolute zero. These basic limitations 
in data are a good reason to develop semi-empirical 
constructions of nucleation rate surfaces in order to 
interpolate and extrapolate the available 
experimental data to areas, for which the information 
is entirely absent.  

We have worked out an algorithm for semi-
empirical construction of nucleation rate surfaces. As 
an example of some unary system, the topology of 
the water vapor nucleation rate surface is discussed. 
Nucleation of two concurrent (stable and unstable) 
phases in the critical germs is considered in the 
context of multi-surface nucleation rates. For 
simplicity, only one phase transition (melting) is 
included in the considered states of water. Several 
plausible assumptions are used to construct the 

nucleation rate over the whole temperature interval 
from critical point to absolute zero.  

Basic principles  

Following the approach by Anisimov (Ref. 2), 
the nucleation rate surface for any system can be 
constructed based on its phase diagram. The concept 
involves the use of the phase equilibrium diagram as 
lines of zero nucleation rates. The nucleation rate 
surfaces arise from the equilibrium lines. Only 
limited amount of experimental data is needed in 
normalizing the slopes of the linearized nucleation 
rates. The nucleation rate surface is described in 
terms of steady-state nucleation rates. To construct 
the surfaces of nucleation rates, some assumptions 
from Ref. 3 are used. All of these assumptions are 
commonly used to describe the first order phase 
transitions. The main characteristic of nucleation (or 
phase transitions of the first order) is the ability to 
separate the initially homogeneous parent phase into 
two or more phases. This condition contradicts to 
characteristics of phase transition of the second order. 
The critical point or critical line (for binary system) 
represents the conditions for the second order phase 
transitions, under which coexistence of two or more 
phases is impossible.  

Assuming that the nucleation rate is represented 
by a continuous, monotonic function, it can be stated 
that the nucleation rate decreases when approaching 
a second order phase transition and becomes zero 
for a second order phase transition. Systems cannot 
reach the conditions of the second order phase 



M. Anisimov et al. Vol. 18,  Nos. 5–6 /May–June  2005/ Atmos. Oceanic Opt.   339 
 

 

transition because of the growing fluctuations near 
the phase transition in the initial phase. Therefore, it 
is only possible to discuss the phase transition limit. 
The algorithm for semi-empirical construction4 of the 
nucleation rate surface can be described as follows. 
 (a) Obtain an extension of the available data for 
stable and unstable phase equilibria to critical and 
the absolute zero temperatures for the system of 
interest.  

(b) Define the conditions corresponding to the 
highest rates of nucleation (maximum under spinodal 
conditions in the present research) and extrapolate 
them to absolute zero.  

(c) Assume that the chosen function for the 
nucleation rate (for example, exponent) holds under 
all nucleation conditions. 

(d) Linearize the experimental nucleation rates, 
using (c), for all channels. 

(e) Estimate the nucleation rates under the 
spinodal conditions and at any low (log J = –10 in 
our case) nucleation rate, using linear approximation 
of the experimental data. 

(f) Approximate spinodal nucleation rates using 
known values of nucleation rates under spinodal 
conditions including zero values at critical and zero 
temperatures. 

(g) Repeat the process (f) for some given low 
nucleation rate (log J = –10 in this case). 

(h) Calculate the nucleation rate surface with 
the use of linearized functions based on 
approximations (f) and (g). 

Equilibrium and spinodal lines  
of water vapor 

To use the algorithm, all the experimental data 
for equilibrium states of water vapor in the form of 
temperature dependences of the pressure P were 
taken from the Smithsonian Meteorological Tables5 
and extrapolated to zero temperature through 
equations: log Plqd = 11.6644 – 2422.2995/T and 
log Psld = 12.5709 – 2670.5623/T for liquid and solid 
phases, respectively (Figs. 1 and 2).  
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Fig. 1. The PT diagram for water: (1) the liquid-vapor 
equilibrium line; (2) the solid–vapor equilibrium line; (3) 
the spinodal line. 

In these equations, the temperature T can vary 
from 0 to 220 K. Equilibrium lines include their 
extensions, which illustrate stable and unstable 
equilibria. The vapor–liquid, vapor–solid, and vapor 
spinodal lines are represented in Fig. 1 in all 
intervals of temperature and pressure. The vapor–ice 
equilibrium is extended to spinodal conditions 
(Fig. 2). The last (spinodal) point of this unstable 
equilibrium corresponds to a temperature of 487.2 K 
and a pressure of 10.00 MPa. 
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Fig. 2. Extrapolation conditions for the spinodal 
decomposition and phase equilibrium conditions (including 
the unstable one): (1) liquid–vapor equilibrium line;  
(2) solid–vapor equilibrium line; (3) spinodal line. 

 
To calculate the spinodal conditions (pressure 

and temperature), we must use the equation of state. 
To find the nucleation rate topology at the absolute 
zero limit, it is necessary to extend the spinodal line 
to absolute zero representing the limit of the vapor 
existence. Spinodal conditions for water vapor were 
calculated using the Van der Waals equation of state 
  

 −= − − 2/( )P RT V b aV ,  

where V is the volume; R is the gas constant; 
a = 27(RTc)

2/64Pc and b = RTc/8Pc. The critical 
temperature Tc = 647.3 K and the critical pressure  
Pc = 22.04832 MPa for water were taken from 
Ref. 6. The spinodal conditions were extrapolated 
from 220 K to the absolute zero temperature using 
the equation: log Psp = 7.2159 – 217.5720/T. 

Spinodal vapor supersaturation 

Of particular interest is estimation of the vapor 
supersaturation for spinodal conditions over the 
whole temperature interval of the spinodal existence. 
Recently, it was suggested that the spinodal line for 
vapor metastable states tends to zero pressure at the 
zero temperature limit.3 Consequently, the vapor 
supersaturation has an indeterminate value in the 
temperature zero limit. Figure 1 presents the spinodal 
lines for water vapor. 

 It seems that the spinodal vapor supersaturation 
should be equal to unity both at the absolute zero 
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limit and at the critical point. Unexpectedly, the 
vapor supersaturation value sharply increases with 
decreasing temperature; and the supersaturation 
logarithm reaches several hundreds at a few Kelvin 
degrees. In Fig. 3 the spinodal vapor supersaturation 
is shown only to 35 orders of magnitude. 

 Water vapor supersaturation under the spinodal 
condition grows dramatically from unity in the 
direction to zero temperature. Semi-empirical 
estimate of the vapor supersaturation under spinodal 
conditions can show if this result holds for other 
vapor. 
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Fig. 3. Water vapor supersaturations under spinodal 
conditions: (1) vapor–liquid; (2) vapor–solid.  
 

As it was mentioned above, the spinodal vapor 
pressure is assumed the same both for liquid and 
crystal formations. Therefore, the spinodal vapor 
supersaturation ratios are different for different 
phases because of the difference in the vapor 
equilibrium pressures over liquid and solid phases 
(Fig. 3). Seemingly, the water vapor supersaturation 
becomes infinite in the absolute zero limit or, more 
probably, supersaturation must be calculated in the 
quantum mechanics approximation. The vapor 
supersaturation growth (see Fig. 3) is clearly 
pronounced at T = 350 K, where estimate of the 
spinodal line vapor pressures is more accurate than at 
low temperatures. 

Linearization of the nucleation data  
in each channel 

It follows from Ref. 7 that vapor nucleation in 
the vicinity of its triple point is two-channel. In 
Ref. 8, the average frequencies of the appearance of 
supercooled water, mixed ice–droplet phase, and ice 
particles in clouds were experimentally determined. 
It has been found that water in atmospheric clouds 
can exist in the droplet or ice states simultaneously 
at temperatures of 230 – 270 K (Ref. 8). It can be 
expected that particles keep initial phase state of 
their critical germs. It was noted in Ref. 9 that if air 
is saturated with respect to ice, it is subsaturated 
with respect to water. As a result, supercooled water 

droplets cannot coexist in equilibrium with ice 
crystals. Continuing this idea, it can be said that ice 
decreases the amount of undersaturated vapor over 
droplets because of vapor pumping out through 
condensation (freezing). It decreases the size and the 
total number of droplet particles. Obviously, the 
mixture of droplets and ice particles in the 
atmosphere must be dynamic, because the processes 
of droplet freezing and vapor nucleating with 
formation of droplets and ice particles proceed there 
simultaneously.  

The experimental data10 correspond to 
nucleation temperatures below the triple point and 
they have to represent the resulting nucleation rate 
for water droplets and ice particles. The experimental 
data, taken by us from Ref. 10, have the rates not 
specified by the nature of the condensed phase.  

Quantitative data on nucleation rates in each 
phase (liquid and ice) are not available. Therefore, 
we specified the phase states on the base of the 
reasonable topology, which is known for the triple 
point vicinity2 for two nucleation channels. The 
intersection points for the ice and droplet nucleation 
rates are calculated using the published data10 for 
total nucleation rate, i.e., joint values of ice and 
droplets. According to our estimates, the intersection 
line of surfaces of both phases is located within three 
orders of magnitude of the nucleation rate. It should 
be emphasized that the nucleation rate must be 
represented by two nucleation channels and two-sheet 
nucleation surface.  

The nucleation rates for ice or liquid droplets 
can be described using the linearized approximation 
such as log J = a + b log–2

 S, where J is the vapor 
nucleation rate, coefficients a and b are constant for 
given temperature T of nucleation. It is assumed that 
these approximations of the experimental nucleation 
rates are true for all nucleation conditions from zero 
to maximum value. The nucleation rates for ice Js 
and droplets Jd (Fig. 4) can be described using the 
linear approximations from Table 1, where S is the 
vapor supersaturation ratio for the given phase, and 
T is the nucleation temperature. It is assumed that 
these approximations of the nucleation rates for each 
channel, listed in Table 1, hold for all nucleation 
conditions from zero to maximum value. 

 

Table 1. Approximations of the quasiexperimental ice (Js) 
and droplet (Jd) nucleation rates extracted from the 

experimental data10 for nucleation temperatures, T(K) 

T, K log Js log Jd 

 220 20.0357–21.6108log–2S 19.0615–14.1080log–2S

 230 21.1240–19.1413log–2S 20.8838–13.5074log–2S

 240 21.1723–15.6712log–2S 22.6646–12.9738log–2S

 250 20.9976–12.8425log–2S 22.5084–11.2466log–2S

 260 20.3089–9.9781log–2S 22.0372–9.6404log–2S 
 

The above point of view can be illustrated 
schematically by Fig. 5, where the linearized 
nucleation rate isotherm arises from the point of 
phase equilibrium.  
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Fig. 4. Experimental data10 (4) and their regressions (1) for 
the total nucleation rate for ice (3) and water droplets (2). 
Temperatures of nucleation are shown near each curve. 

The slope of the linearization is defined by the 
experimental data points. The top point of 
linearization corresponds to the vapor spinodal 
conditions.  

 

 
Fig. 5. Scheme of algorithm for the computer semi-empirical 
construction of nucleation rate surfaces. 

Nucleation rate under spinodal 
conditions and the vapor 
supersaturation profile  
at J = 10–10 cm–3s–1  

Extreme nucleation rates can be extrapolated to 
conditions of spinodal decomposition, which will 
result in estimates of nucleation rates under spinodal 
conditions. Zero rates of nucleation at the critical 
temperature and absolute zero as well as the 
extrapolated points provide for all currently available 
information on nucleation rate estimation under 
spinodal conditions. Possible spinodal nucleation rates 
are illustrated in Fig. 6 for the case of water vapor 
nucleation. Second order regression in the log J–T 
space is used to approximate the points for ice (black 
dots) and droplets (gray dots) using zero values of 
nucleation rates at the critical point and the absolute 
zero temperature limit. The regressions involve the 
equilibrium conditions as zero values of the nucleation 
rate. Nucleation rate of 10–10

 cm–3 ⋅⋅⋅⋅ s–1 is used as a 
reference level in our consideration. Extrapolation of 
the linearized experimental data was used to estimate 
the supersaturation values for that nucleation rate.  
 Spinodal supersaturations and the supersaturations 
(or vapor pressures), estimated at the reference 
nucleation rate using the regressions for each phase 
nucleation rate (Fig. 4 and Table 1), can be used to 
depict the vapor pressure (bold line in Fig. 6) for the 
reference nucleation rate level. Figure 6 illustrates 
relative configurations of the spinodal nucleation 
rates for ice particles and water droplets, as well as 
the vapor pressure at J = 10–10

 cm–3 ⋅⋅⋅⋅ s–1.  
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Fig. 6. Spinodal nucleation rates. Ice nucleation (gray line); 
droplet nucleation (dashed line); and vapor pressure (bold 
line).  

Nucleation rate surface 

The lowest level of nucleation rate surface at  
J = 10–10 cm–3 ⋅⋅⋅⋅ s–1 is low enough for any practical 
use because the nucleation rate J = 10–10 cm–3 ⋅⋅⋅⋅ s–1 
yields only one nucleation event per cm3 for more 
than 300 years. With linear approximation of the 
same kind (using scale or any other functional 
relations) for the given nucleation temperature 
(log J = a + b log–2 S in our case), it is possible to 
build the nucleation rate surfaces for formation rates 
of any phase (crystal or liquid in our case). 
Insignificant extensions to the critical and absolute 
zero temperatures aiming at obtaining the total 
nucleation rate surface can be performed using any  

 

reasonable extrapolation of constants, which were 
employed in linearization. Figure 7 illustrates the 
nucleation rate surface in the log J–T–P space. The 
alternative J–T–P presentation is shown in Fig. 8. 
The equations representing the isotherms of the 
nucleation rate surfaces are collected in Table 2. The 
available experimental data on nucleation and 
equations of states play key roles in this semi-
empirical construction. 

 

  

Fig. 7. Nucleation rate surfaces for water droplets and ice 
particles in the log J–P–T space; water droplet nucleation 
(bold lines); ice particle nucleation (gray lines); and vapor 
spinodal (dashed line).  

  

Note that nucleation is considered here in the 
one-component approximation for the “water vapor – 
carrier gas” system. However, such nucleation in fact 
is binary, because the carrier gas takes part as the 
second component.11 

Table 2. Equations representing the isotherms of the nucleation rate surfaces  
 

For nucleation of droplets or glassy particles  For nucleation of solid phase (ice) 

log Jd [20 K] = –5.8046–12.3370log–2S 

log Jd [40 K] = –1.8765–6.1199log–2S 

log Jd [100 K] = 8.3047–2.3702log–2S 

log Jd [160 K] = 16.0822–1.4137log–2S 

log Jd [210 K] = 20.7293–1.0224log–2S 

log Jd [220 K] = 21.4589–0.9643log–2S 

log Jd [230 K] = 22.1222–0.9107log–2S 

log Jd [240 K] = 22.7189–0.8613log–2S 

log Jd [250 K] = 23.2492–0.8154log–2S 

log Jd [260 K] = 23.7130–0.7726log–2S 

log Jd [270 K] = 24.1104–0.7327log–2S 

log Jd [300 K] = 24.9046–0.6269log–2S 

log Jd [330 K] = 25.1029–0.5376log–2S 

log Jd [360 K] = 24.7074–0.4606log–2S 

log Jd [390 K] = 23.7206–0.3930log–2S 

log Jd [450 K] = 19.9884–0.2785log–2S 

log Jd [510 K] = 14.0209–0.1840log–2S 

log Jd [570 K] = 6.2725–0.1055log–2S 

log Jd [630 K] = – 12.5176+0.0141log–2S 

log Js [20 K] = –9.9994–(6.619e–3)log–2S  

log Js [40 K] = –5.0543–12.2849log–2S 

log Js [100 K] = 7.1300–6.0197log–2S 

log Js [160 K] = 15.3388–3.0508log–2S 

log Js [210 K] = 19.1441–1.8134log–2S 

log Js [220 K] = 19.5742–1.6368log–2S 

log Js [230 K] = 19.8940–1.4773log–2S 

log Js [240 K] = 20.1037–1.3330log–2S 

log Js [250 K] = 20.2031–1.2021log–2S 

log Js [260 K] = 20.1923–1.0833log–2S 

log Js [270 K] = 20.0714–0.9752log–2S 

log Js [300 K] = 19.0483–0.7051log–2S 

log Js [330 K] = 17.0365–0.4996log–2S 

log Js [360 K] = 14.0399–0.3426log–2S 

log Js [390 K] = 10.0676–0.2228log–2S 

log Js [450 K] = –0.6056–0.0647log–2S 
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Fig. 8. Alternative, J–P–T, pattern of the nucleation rate 
surfaces for water droplets and ice formation: ice particle 
nucleation (gray line); water droplet nucleation (solid bold 
line); spinodal nucleation for vapor nucleation (thin black 
line); and vapor spinodal (dash line). 

Summary 

The algorithm for computer semi-empirical 
construction of the nucleation rate surface for a 
single-component system with triple point is 
developed for the first time. The algorithm is realized 
for the case of water vapor nucleation rate surface. 
The nucleation rate surface is constructed for all 
conditions possible from physical point of view. An 
obvious advantage of the semi-empirical construction 
of nucleation rate surfaces is a possibility to 
construct this surface over the whole interval of 
variation of nucleation parameters, that is impossible 
experimentally. It is assumed that the algorithm will 
be further developed for the semi-empirical 
construction of nucleation rate surfaces for one- and 
two-component systems. 

 The construction of the nucleation rate surfaces 
for water has clarified additional requirements in 
studying nucleation, namely:  

– nucleation rates must be measured in each 
channel of nucleation; 

– additional theoretical study is needed to 
provide a better extrapolation or scaling of 
nucleation rates to spinodal conditions;  

– theoretical validation is needed of classes of 
functions, which can be used in approximation of 
nucleation rates at a reference level of spinodal and 
low rates; 

– experimental range of the nucleation rate 
measurements is very narrow in comparison with 
total range of the nucleation process. 

 Measurements should be optimized to provide 
for the critical reference points for the nucleation 
rate surface construction. Data collected in Table 2 
can be used in practical calculation of nucleation of 
ice particles and droplets, which can proceed under 
atmospheric conditions. Obtaining of actual 
measurements of nucleation rates for each channel of 
nucleation may require a correction of the available 
data.  
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