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The paper describes the algorithms of determination of circular averages, standard deviations, 

skewness, and kurtosis of the direction ϕ of the horizontal wind velocity Vh obtained from 
measurements with a Volna-3 sodar. In contrast to the standard approach, they do not require 
preliminary calculation of current ϕ(i) values themselves. The trigonometric ϕ moments are 
determined through the corresponding functions of the orthogonal components of the vector Vh. The 
usefulness of circular standard deviation as a measure of the angular variance of the horizontal wind 
velocity in acoustic sounding of the atmosphere is addressed. 

 

Introduction 
 
In Ref. 1 Fedorov describes the use of the 

methods of circular statistics in the processing 
software system of Volna-3 sodar for estimation of 
angular parameters of horizontal wind velocity Vh. 
These methods are based on definitions of cosine- and 
sine-moments of the random angle φ with respect to a 
given direction φ0

2: 
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α φ = φ φ⎧⎪
⎨β φ = φ φ⎪⎩

 (1) 

where M denotes the mean; and p is the order of 
trigonometric moment (in the case considered here, 
p = 1, 2, 3, 4 is used). These relations are presented as 
follows 
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α φ = α φ + β φ⎧⎪
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  (2) 

where 

 (0) {cos };p p M pα = α = φ  (0) {sin }p p M pβ = β = φ  

are cosine- and sine-moments with respect to zero 
direction φ0 = 0. Uniting αp and βp into complex 
plane, we can write: 

 (0) exp( ),p p p p p pj jτ = τ = α + β = ρ μ  

where 

 2 2
;p p pρ = α + β  argp pμ = τ  

is the absolute value and polar angle τp. When 
⎢τ1 ⎢ ≠ 0, the circular average and circular standard 
deviation of directions of the random angle φ2 are 
uniquely determined quantities 

 μ = μ1 = Mc(φ) = argτ1,  c
( ) 2ln ,σ φ = − ρ  

where 

 1 1ρ = ρ = τ  

is the absolute value of the average vector with  
the current coordinates {cosφ(i), sinφ(i)}. If in 
formula (1) we take φ0 = μ, then it is possible to pass 
to the central trigonometric moments, and instead of 
Eqs. (2) we can write: 
 

 
( ) cos sin ,

( ) cos – sin .

p p p

p p p

p p

p p

α μ = α μ + β μ⎧⎪
⎨β μ = β μ α μ⎪⎩

 (3) 

At the same time, it is valid that α1(μ) = ρ and β1(μ) = 
= 0.2 Taking into account the results from Ref. 2, 
Fedorov1

 uses as the circular skewness γñ(φ) and 

kurtosis εñ(φ) the following quantities:  γñ(φ) = –β2(μ)/ 
3/2/[2 2(1– ) ]ρ  and 4 2

c 2( ) [ ( ) – ]/ [2(1– ) ].ε φ = α μ ρ ρ  

Estimates of these circular parameters are based 
on sampling trigonometric moments with respect to 
zero direction1,2: 

  ˆ ,

=1

1
= cos ( )

N

p p

i

a p i
N

= α φ∑  ˆ ,

=1

1
sin ( )

N

p p

i

b p i
N

= β = φ∑   (4) 

where N is the number of current values φ(i). Then, 
the estimates of the average direction and standard 
deviation φ have the form 

 ˆˆ ( ) ;c 1 1arg( + )M a jbμ = φ =   ˆ ( ) ,
c

–2lnrσ φ =  

where ˆ .2 2

1 1r a b= ρ = +  The sampling central moments 

ˆˆ ˆ( ) ( )p pa μ = α μ  and ˆˆ ˆ( ) ( )p pb μ = β μ  can be obtained with 

the use of formulas (3). At the same time, estimates 
of circular skewness and kurtosis take the form of 

 /ˆ ˆ( ) – ( )/[ ( – ) ],
3 2

c 2 2 2 1b rγ φ = μ  

 ˆ ˆ( ) [ ( ) – ]/[ ( – ) ].
4 2

c 2 2 1a r rε φ = μ  
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Expression for the standard error of estimate of 

circularly average direction 
ˆ[ ( )]
c

Mσ φ  is presented in 

Ref. 2, while expressions for ˆ[ ( )],
c

σ σ φ  ˆ[ ( )]
c

σ γ φ , and 

ˆ[ ( )]
c

σ ε φ  were obtained in Ref. 1. They are determined 

by N and corresponding combinations of the moments 
αp and βp up to the fourth order inclusive. 

Fedorov1 notes that in calculation of the circular 
parameters of horizontal wind velocity one can use 
two equally valuable variants of φ(i) determination. 
In the first, standard approach, we use as φ(i) the 
usual meteorological direction of wind velocity ϕ(i), 
calculated from current values of the orthogonal 
components Vx(i) and Vy(i) of the vector Vh: 

 ( ) arctan[ ( )/ ( )] ,y xi V i V i Cϕϕ = +  (0 ( ) 2 ),i≤ ϕ < π   (5) 

where Cϕ is the multiple of π/2, determined by 
positions of Vx(i) and Vy(i) on the coordinate plane. 
It is usually assumed that the X- (Y-) axis points due 
north (east), while angles are counted off the 
northern direction clockwise.3 In the second approach, 
we use as φ(i) the deviations θ′(i) from the current 
values ϕ(i) of the “instant” vectors Vh(i) from 

meteorological direction θ of the average vector 

M(Vh): 

 
( ) ( ) – arctan[ ( )/ ( )] ,

(– ( ) ),

i i v i u i C

i

θ
′θ = ϕ θ = +⎧

⎨ ′π ≤ θ < π⎩
  (6) 

where u, v are the longitudinal and latitudinal 
components of the horizontal velocity Vh and Cθ 
minimizes θ′(i) in absolute value. Note that positive 
(negative) directions of the angles are measured 

clockwise (counterclockwise). The calculated values 
of the angular parameters and their standard errors 
due to the use of statistics ϕ and θ′ coincide. It only 
should be kept in mind that Mc(θ′) = μ′ = Mc(ϕ) – 
– θ = μ – θ. (In the general case, 0,′μ ≠  see Ref. 1). 

Thus, traditional use of the methods of circular 
statistics for estimating angular parameters of 
horizontal wind velocity necessitates preliminary 
calculation of N values of ϕ(i) Eq. (5) or θ′(i) 
Eq. (6) at each chosen height. Moreover, in addition 
to immediate calculation of function arctan, for 
correct retrieval of ϕ(i) (or θ′(i)) it is necessary to 
choose Cϕ (or Cθ) value N times out of its five 
possible variants. 

On the other hand, the determination of circular 
parameters themselves and their accuracy 

characteristics calls for calculation of 8N values of 
trigonometric functions cos pϕ(i), sin pϕ(i) (or 

cos pθ′(i), sin pθ′(i)), p = 1, 2, 3, 4 more. As a result, 
the time required to accomplish these calculations 
throughout the altitude range may be quite long, 
substantially slowing down sodar measurements of the 
entire set of wind parameters and other characteristics. 
Therefore, presently the processing software system 
of Volna-3 sodar incorporates another, simpler and 

faster, method of determination of circular parameters 
of the horizontal wind velocity. It does not assume 
calculation of current angular ϕ(i) (or θ′(i)) values 
and their cosine and sine coordinates (4), it is rather 
based on equivalent replacement of the latter by 
certain functions of the corresponding orthogonal 
components of the vector Vh. Moreover, it is more 
suitable for a microprocessor implementation. 

 

1. Relation between the trigonometric 
moments of the vector Vh and its  

orthogonal components 
 

First, we shall consider the variant, which uses 
ordinary Cartesian Vx, and Vy-components. We assume 
that Vx(i) < 0 and Vy(i) > 0. Then, in formula (5) 
Cϕ = 2π (see Ref. 3) and 3π/2 < ϕ(i) < 2π. Introducing 
the variable z = Vy/Vx < 0 and using well known 
trigonometric identites4 we obtain: 
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where 

 2 2

m ( ) ( ) ( ) ( )x yhV i i V i V i= = +V  

is the absolute value of the current horizontal wind 
velocity. Analogously, we can show the validity of 
the obtained relations for all other possible positions 
of Vx(i), Vy(i) on the considered coordinate plane, 
including the case with Vx(i) = 0. Then, taking into 
account trigonometric identities,4 the above-mentioned 
definitions of cosine- (αp) and sine- (βp) moments of 
the random angle ϕ can be written in terms of 
variables zx = Vx/Vm and zy = Vy/Vm in equivalent 
form as: 
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⎪
β = ϕ = β⎪⎩

  (7) 

From this, the ensuing analogs of expressions (4) for 
the corresponding sampling trigonometric moments 

ˆ

p pa = α  and ˆ

p pb = β  of directions ϕ(i) are: 
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We now proceed to discussion of the variant of 
using uv-components of the vector Vh, which 
determines θ′(i). In this case, for all possible current 
values of u(i) and v(i) it is fulfilled that cos θ′(i) = 
= zu(i), sin θ′(i) = zv(i), where zu(i) = u(i)/Vm(i), 
zv(i) = v(i)/Vm(i), and the absolute value of Vh(i) is 

written as Vm(i) 
2 2( ) ( ).u i v i= +  As a verifying 

example, we assume that u(i) < 0 and v(i) > 0. For 
this, the corresponding value Cθ = π, in expression (6), 
and π/2 < θ′(i) < π. Using the variable z = v/u < 0, 
we obtain 

 
2

2
m m

1
cos cos [arctan( ) ] –cos –arccos

1

1
– – ,

1

z

z

u u

V Vz

⎛ ⎞
′θ = + π = =⎜ ⎟⎜ ⎟

+⎝ ⎠

= = =
+

 

 
2

2
m m

sin sin [arctan( ) ] –sin arcsin
1

– – .
1

z
z

z

v uz v

V u Vz

⎛ ⎞
′θ = + π = =⎜ ⎟⎜ ⎟

+⎝ ⎠

= = =
+

 

Then, the equivalent relations for cosine- (α′p) and sine- 

(β′p) moments of the random angle θ′ can be written as 
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From this, the ensuing expressions for considered 

sampling trigonometric moments a′p and b′p of directions 
θ′(i) are: 
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Thus, in estimating circular parameters of the 
horizontal wind velocity, the use of formulas (7)–
(10) allows us, without loss of accuracy, to avoid 
direct calculation of the current angular values ϕ(i) 
(or θ′(i)) and their cosine or sine coordinates (4). At 
the same time, for introduced trigonometric moments, 
the important relations following from initial 
definitions (1)–(3) are yet valid: 

 ( ),p p′α = α θ  ( ),p p′β = β θ   (11) 

 ( ) ( ),p p′ ′α μ = α μ  ( ) ( ).p p′ ′β μ = β μ   (12) 

In particular, from the expression (12) it follows that 
circular characteristics of scattering, namely ρ, σñ(φ), 
skewness γñ(φ), and kurtosis εñ(φ), are invariant with 
respect to the change of origin of angles φ, consistent 
with calculations by Fedorov.1 Analogously, in the 
classical linear statistics, the characteristics of 
scattering, skewness, and kurtosis, expressed in terms 
of the corresponding central moments, do not depend 
on the position of origin on the scale of values of the 
observed random quantity. 

 

2. Relation between circular standard 
deviation of the vector Vh  

and parameters of its uv-components 
 

The equivalent relations presented are useful in 
that they provide better insight into physical meaning 
of the circular parameters considered. The introduction 
of the latter relies on the fact that for small 
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variations δ of the random angle φ, its distribution 
W(φ) over the circle is close to the distribution over 
the corresponding short interval of a straight line.2 
Next, based on definitions of statistical characteristics 
of W(φ) on a straight line, their circular analogs are 
obtained. More complicated is the situation with 

circular standard deviation σñ(φ) –2ln .= ρ  Mardia2
 

argues that “informative interpretation of this 
characteristic, based on analogies with scattering 
characteristics on the straight line, is only possible in 
the case of distributions close to wound normal”. If 
there is not such a confidence, the circular variance 
Dc(φ) = 1 – ρ is recommended for use as a measure 
of variance of the random directions φ. However, 
analysis of large amount of experimental data, obtained 
using a Volna-3 sodar, allows us to conclude that it 
is the possible to use σñ(ϕ) = σñ(θ′) as a characteristic 
of angular standard deviation σ(φ) of horizontal wind 
velocity. This is supported by Fig. 6 from Ref. 1, which 
presents altitude profiles of σ(φ), obtained using ˆ ( )

c
σ ϕ  

and three other ˆ ( )′σ θ estimates. One of them, namely, 

ˆ ( ),l
′σ θ  corresponds to the linear part of expansion 

into Taylor series about the means M(u) and 
M(v) = 0 of the initial relation (6) for θ′, that is we 
use the formula 

 l l( ) ( ) ( )/ ( ),
v
I v M u′σ ϕ = σ θ = = σ  

where Iv is intensity of turbulence for the v-component; 
and σ(v) is the corresponding standard deviation. 
This approximation is widely used in practice5–7

 and 
considered to be valid if pulsations of wind direction 
do not exceed 20–30°. The second estimate, ˆ ( ),2

′σ θ   

is based on accounting for the quadratic terms in 

expansion (6), i.e., on the relationship 

 2
2( ) 1 ,

v u
I I′σ θ = +  

where Iu = σ(v)/M(u) is the intensity of turbulence 
for the u-component. The third approach consists in 
transformation of the initial angular distributions 
W(θ′) from the circle to the interval of a straight 
line –π ≤ θ′ < π and subsequent use of the methods 
of linear statistics (the estimate ˆ ( )).cl

′σ θ  This picture 

shows high correlation of standard angular deviations 
σ(φ), obtained by all the four methods. It is 
noteworthy, that the maximum values (up to 60° for 
ˆ ( ))cσ ϕ  and largest variance ˆ ( )′σ θ  are observed near 

underlying surface at low wind velocities. At other 
altitudes, where the increase of wind velocity and 
decrease of σ(φ) down to approximately 25° are 
observed, the differences between all estimates ˆ ( )σ φ  

substantially decrease. 
Now we shall obtain the relation of circular 

standard deviation σc(φ) of the vector Vh with the 
parameters of its uv-components. For this, taking 
into account the definitions introduced above, we 

express the square of σc(φ) through the trigonometric 
first-order cosine- and sine-moments of directions θ′: 
 

 2 2 2 2

c c 1 1( ) ( ) –2ln .′ ′ ′σ φ = σ θ = α + β  

Next, expanding into Taylor series about α′1 = 1 and 

β′1 = 0 up to quadratic terms inclusive we obtain 

 2 2 2

c 1 1 1( ) 2(1– ) (1– ) – .′ ′ ′σ φ = α + α β  

At the same time, from the equivalent relations (9) it 
follows that: 
 

 { }2 2

1 M u u v′α = +  and { }2 2

1 .M v u v′β = +  

Taking into account the quadratic terms in expansions 
of these expressions into Taylor series about the 
means M(u) and M(v) = 0 and taking the required 
averages, we obtain 

 2 2 2

1 1– ( )/2 ( ) 1– /2;
v

v M u I′α = σ =  

 2

1 –cov( , )/ ( ),u v M u′β =  

where cov(u, v) is the correlation moment between 
uv-components of the vector Vh. Therefore, the first-
order cosine-moment for θ′ is related with the 
intensity of turbulence for the v-component. At the 

same time, the relation for β′1 is identical to the 
expression obtained in Ref. 1 for M(θ′). Thus, the 

sine-moment β′1 characterizes the shift of the mean 
direction of the “instant” vectors Vh(i) from θ direction 
of the mean vector M(Vh). As noted in Ref. 1, in 
most cases this shift is not large; it is significant 
mainly at low wind velocities near underlying surface. 

In any case, the contribution of β′1
2
 to 

2

c( )σ φ  as 

compared with other terms can be neglected and we 
may assume the validity of the relation 

 2 2

c 1 1( ) 2(1– ) (1– ) .′ ′σ φ ≅ α + α  

Taking into account the expansion for α′1 we finally 
obtain  

  
2 2

l
c l2

( ) ( ) ( )
( ) 1 ( ) 1 .

( ) 44 ( )

v v

M u M u

′σ σ σ θ
′σ φ ≅ + = σ θ +   (13) 

Note that in derivation of Eq. (13) we did not 
use the assumption on functional form of the angular 
distribution W(φ) of vector Vh. Therefore, they also 
must be valid for W(φ) other than wound normal 
distribution and Mises distribution close to it. 

Thus, the circular standard deviation σc(φ) has 
clear physical meaning. For small angular fluctuations 
δ  of vector Vh it practically corresponds to usual 
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standard deviation σl(θ′) arising from the linear part 
of the expansion of the initial relation (6) for θ′ into 
Taylor series. For large δ, the standard deviation 
σc(φ) much better corresponds to σ2(θ′), where the 
quadratic terms of the expansion (6) are also taken 
into account. These conclusions totally agree with 
the data of real measurements presented in Ref. 1, 
Fig. 6. Moreover, from Ref. 1, Figs. 7 and 8, it also 
follows that almost throughout the entire altitude 
range considered, the angular distributions of vector 

Vh significantly differ from wound normal and Mises 
distributions. Only above 370 m we can expect the 
validity of these distributions. Summarizing the above 
said, we can conclude that in acoustic sounding of 
the atmosphere, with its characteristic spatiotemporal 
averaging and data sampling scales, the use of circular 
standard deviation σc(φ) as a measure of angular 
variance of the horizontal wind velocity is well 
substantiated and can be successful in practical 
applications. 

 

3. Standard errors  
of estimates of circular parameters  

of the vector Vh 
 

For completeness of presentation, we would like 
to show the identity of standard errors of estimation 
of the above-mentioned circular parameters, 
independent of the form of the angular statistics of ϕ 
or θ′ used. Although this fact was already discussed 
elsewhere,1 it also followed from the calculations 
performed, and did not directly follow from analytical 
relations which were mostly presented in terms of 
cosine- (αp) and sine- (βp) moments of the random 
angle ϕ  with respect to zero direction ϕ0 = 0. At the 

same time, the relation between αp, βp and α′p, β′p of 
angles ϕ and θ′ is determined by expressions (11), 
which complicates the comparative analysis of the 
indicated errors. Therefore, we will write these 

relations in terms of central trigonometric moments. 
For this, we shall use well known relations 

(cos μ = α1/ρ, sin μ = β1/ρ)2 and their corollaries 

( 2 2 2

1 1cos2 ( – )/ ,μ = α β ρ  
2

1 1sin2 2 /μ = α β ρ ). Next, 

taking into account formulas (3), from Ref. 1 we 
obtain expressions for standard errors of estimates of 
circular average and standard deviation of the 

directions ϕ in the new form sought: 

 ˆ ˆ[ ( )] [ ] [ – ( )]/ ,2c 21 2M Nσ ϕ = σ μ = α μ ρ  

 ˆ[ ( )] ( )/ ( ),
c c

rσ σ ϕ = σ ρσ ϕ  

where 

 2 2

2[ ] ( ) [1– 2 ( )]/2D r r N= σ = ρ + α μ  

is the variance of the absolute value of sampling 
average vector with the current coordinates {cos ϕ(i), 
sin ϕ(i)}. 

The relation for standard measurement error of 
circular skewness, given in Ref. 1, can be presented 
as follows 

 
( )

ˆ ˆ[ ( )] [ ( )] [ ] –
( ) ( )

2

c

c 23 2

1 9

8 1 4 1
D b D r

⎧ γ ϕ⎪
σ γ ϕ = μ +⎨

− ρ − ρ⎪⎩
 

 

/

/

( )
ˆ– [ ( ), ] ,

( )

1 2

c

25 2

3
cov

2 2 1
b r

⎫γ ϕ ⎪
μ ⎬

− ρ ⎪⎭
 

where 

 ˆ[ ( )] [ ( )] ( )2 2 24D b D bμ = μ + α μ ×  

 ˆ[ ( ) ( ) ( )/ / ]2 3 2 1 2D N N× α μ μ + α μ ρ −  

is the sampling variance of the second-order central 
sine-moment [taken from Ref. 1 after a series of 
trigonometric transformations with the use of the above-
mentioned relations for cos μ, sin μ, and Eq. (3)], 
 

 2

2 4 2[ ( )] [1– ( ) – 2 ( )]/2D b Nμ = α μ β μ  

is the part of ˆ[ ( )],2D b μ  accounting for the neglect of 

fluctuations of sampling µ̂  value with respect to the 

true value 
c
( ).Mμ = ϕ  It is also valid that: 

 ˆ ˆ2 2 2cov[ ( ), ] = cov[ ( ), ]–2 ( )cov[ , ],b r b r rμ μ α μ μ  

where 

 2 3 2cov[ ( ), ] [ ( ) – 2 ( )]/2 ,b r Nμ = β μ ρβ μ  

 ˆ 2cov[ , ] = ( )/2 .r Nμ β μ ρ  

Expression for the standard measurement error 
in circular skewness in terms of central trigonometric 
moments has the form 

 {ˆ ˆ[ ( )] [ ( )] [ ( – ) – ] [ ]3

c 2 c16 1 2D a D rσ ε ϕ = μ + ε ρ ρ +  

 } ( )ˆ[ ( ) ] [ ( ), ] – ,
1/2

3
c 28 1 cov 2 1 2a r+ ε − ρ −ρ μ ⎡ ρ ⎤⎣ ⎦  

where 

 ˆ ˆ[ ( )] [ ( )] ( )[ ( ) ( ) ( )/ ],2 2 2 2 34 2D a D a D Nμ = μ + β μ β μ μ + β μ ρ  

 2

2 4 2[ ( )] [1 ( ) – 2 ( )]/2 ,D a Nμ = + α μ α μ  

  ˆ ˆ[ ( ), ] [ ( ), ] ( ) [ , ],2 2 2cov cov 2 cova r a r rμ = μ + β μ μ  

 2 3 2cov[ ( ), ] [ ( ) – 2 ( )]/2 .a r Nμ = ρ + α μ ρα μ  
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Note that for symmetric and unimodal angular 
distributions, the central sine-moments equal zero, 
that is, βp(μ) = 0 (Ref. 2). Then, ˆ[ ( )] [ ( )]2 2D a D aµ = µ  

and 

ˆ[ ( ), ] [ ( ), ].2 2cov cova r a rµ = µ  Therefore, in this case, 

the contribution of fluctuations of sampling circular 
average μ̂  to ˆ[ ( )]

c
σ ε ϕ  can be neglected. 

From analysis of the relations presented here and 
by virtue of expression (12) we deduce the sought 
identity of the standard errors of estimation of all 
considered circular parameters independent of the 
form of the initial angular statistics of ϕ or θ′. 

In conclusion, we should like to note that the 
method of calculation of circular parameters 
presented can be used in other technical applications, 
where the analyzed angular characteristics are based 
on the corresponding orthogonal components. 
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