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It has been stated that the theory of similarity of turbulent flows can be propagated to an 
arbitrary anisotropic boundary layer. With the use of semiempirical hypotheses of the turbulence 
theory, it is theoretically and experimentally shown that an arbitrary anisotropic boundary layer can 
be considered the locally weakly anisotropic. Except for the tensor of the turbulent thermal 
diffusivity coefficients, the theoretical propositions of an isotropic layer (for plane-parallel flows) are 
carried out in the vicinity of every point of the layer. In an arbitrary boundary layer, the key 
turbulence parameter is the varying Monin–Obukhov number. It is established that the anisotropic 
boundary layer can be substituted for an effective isotropic layer. Theoretical expressions are 
obtained for the vertical outer scale of turbulence in the anisotropic boundary layer; the coincidence 
of the experimental and theoretical values of the outer scale of turbulence is shown. 

 

Introduction 

As is generally known, the turbulence theory 
originates from the description of liquid and gas 
flows on the basis of the hydrodynamic equations. A 
full statistical description of the accidental 
hydrodynamic fields can be presented by the 
characteristic functional.1,3,4 The characteristic 
functional contains information about the infinite set 
of moments of fields and fits dynamic equations with 
functional derivatives. At present, acceptable 
methods for solution of such equations are not 
available. At the same time, for many practical 
applications it is sufficient to determine only the 
statistical moments of the lowest orders. Therefore, 
by tradition, the researches in the turbulence theory 
are based on a set of the Reynolds equations, 
resulting from averaging of the hydrodynamic 
equations.1–6 However, in the set of the Reynolds 
equations, the number of unknowns exceeds the 

number of equations. A closure of this system is 
usually performed via setting some relations between 
moments of hydrodynamic fields. The relations found 
experimentally or obtained from the physical reasons 
(for example, from the dimensionality reasons), are 
termed semiempirical hypotheses of the turbulence 
theory.  

The basic semiempirical hypotheses are usually 
reduced to setting relations between the second 

moments of the velocity i jv v′ ′  and temperature jv T′ ′  

pulsations (deviations from average) and the averaged 

velocity and temperature fields T.  These hypotheses 
are based, as a rule, on analogy between the 
turbulent and molecular motions. Thus, the terms 

i jv / xν∂ ∂  and jT/ xχ∂ ∂  presented in the averaged 

equations are proportional to the flow components of 
the momentum and heat (ν is the kinematic viscosity; 

χ is the thermal diffusivity). They are caused by the 
molecular diffusion and describe the medium free of 

turbulence. In the turbulent medium, – i jv v′ ′  and –

jv T′ ′ are added to the indicated components, 

respectively. Therefore, these quantities can be 
considered as components of turbulent flows of the 
momentum and heat. In terms of the semiempirical 
theory, the structure of dependence of turbulent 

flows of the momentum and heat on iv  and T  is the 
same, as in case of purely molecular diffusion. In 
general case of the anisotropic turbulence1 

 i jv v′ ′  = 
n n ijv v /3′ ′ δ – (KinÔnj + KjnÔni)/2; 

 Ôij = i j j iv / x v / x ;∂ ∂ + ∂ ∂   

 jv T′ ′  = Tji iT/ x ,− ∂ ∂K  (1)  

where the repeating indices stand for summation. The 
components Kij of the symmetric tensor K in 
definitions (1) are the turbulent viscosity coefficients, 
and the components KTij of the tensor KT are the 
turbulent thermal diffusivity coefficients or the 
turbulent diffusion coefficients for a passive 
impurity, which is the potential temperature T (in a 
boundary layer, the standard and potential 
temperatures can be the same). Hypotheses (1) 
replace 12 components of turbulent flows of the 
momentum and heat for 27 new quantities (by 6 
components in symmetric tensors Kij and Ôij, nine in 

tensor KTij, three derivatives iT/ x∂ ∂  and three 

components in the sum
n n

v v′ ′ ). 
It is generally known1,3–7 that in plane-parallel 

flows (between separated planes and in tubes) the 
turbulent phenomena in a boundary layer are well 
described by semiempirical hypotheses with 
application of only two scalar parameters K and KT 
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(the turbulent viscosity coefficient and the turbulent 
thermal diffusivity, respectively). The turbulence in 
an atmospheric boundary layer can be considered a 
particular case of the plane-parallel flow when 
considering flows above extended ground areas with a 
smooth, homogeneous (identical by structure), and 
equally heated surface. As equations (1) show, the K 
and KT tensors are isotropic (Kij = Kδij, KTij = KTδij) 
for plane-parallel flows. In this connection, a 
boundary layer with the isotropic tensors K and KT 
will be called for brevity the isotropic boundary 
layer. If at least one of K and KT is anisotropic, the 
boundary layer is called anisotropic.  

In practice, however, these definitions must be 
more comprehensive. Thus, the isotropic boundary 
layer turns out to be a more general notion, than the 
boundary layer in plane-parallel flows. Unlike the 
plane-parallel flows, in an isotropic layer in a general 
case the conditions can be realized, under which the 
horizontal derivatives and a vertical component of 
mean velocity are not zero. It is naturally to call 
such a layer weakly isotropic, attributing the notion 
of isotropic (or strongly isotropic) boundary layer 
only to plane-parallel flows. The similar division can 
be conducted also for the anisotropic boundary layer. 
Thus, if one of the tensors K or KT is anisotropic, 
then the boundary layer can be called weakly 
anisotropic. If the both tensors are anisotropic, then 
the layer is called strongly anisotropic. 

The notion of the isotropic boundary layer (for 
plane-parallel flows) is not connected with the 
isotropy of the hydrodynamic fields themselves. 
There is a preferential direction (the distance from 
the boundary plane) in the isotropic layer, therefore, 
the fields will not be isotropic. 

Components of tensors K and KT can be 
presented as products of the root-mean-square values 
of velocity pulsations on the tensor components of 
the turbulence scales lij, lTij (scales are the mean 
distances, to which turbulent formations are capable 
to move keeping their individuality)  

 Kij =
1/2

n nv v′ ′ lij, KTij = 
1/2

n nv v′ ′ lTij.  

For isotropic tensors K and KT, the scale 
ellipsoids lij and lTij are transformed into a sphere. 
Generally, tensors lij and lTij do not coincide. The 
variability of temperature scales lTij is commonly 
higher, than of velocity scales lij. This is evident in 
case of free convection, when wind and friction are 
absent. Then turbulence receives the energy not from 
the averaged motion energy, but from the 
temperature instability energy and has a character of 
vertical thermal flows. Therefore, in the first 
approximation, tensor K in Eq. (1) can be considered 

isotropic ( i jv v′ ′
 remains anisotropic in any case). 

Then1,6 

 i jv v′ ′  = 
nn

v v′ ′ δij 

/3 – K i j j i( v / x v / x ),∂ ∂ + ∂ ∂   

 jv T′ ′  = – KTji iT/ x∂ ∂   (2) 

and the number of unknowns decreases to 22. 

Semiempirical hypotheses are actively used in 
studies of the turbulent diffusion of passive 
impurities, including the temperature diffusion. The 
hypotheses (2) are usually taken as fundamental. 
Expressions accepted at present for K, KTij resulted 
from generalization of the experimental data obtained 
above approximately even surface (not in mountain 
regions), and take into account the effect of thermal 
stratification. For mean wind velocity1 directed along 
the axis x1 

 KTij = βij KT, KT / K = α, α = Pr 

–1,  (3) 

 β33 = 1, β11 = 8.04, β22 = 4.21, β13 = – 3.51, 

 β31 = – 0.49, β12 = β21 = β23 = β32 = 0, 

 K = K(z) = æV∗ z/ϕ(ζ), ζ = z/L,  

 KT = KT(z) = α(z) K(z)  

(the error in determination of βij does not exceed
1 

30%). Here æ = 0.4 is the Karman constant; z is the 
height above the underlying surface (x1 

= x, x2 

= y, 
x3 

= z); ϕ(ζ) is the universal similarity function 
specifying the stratification type (Fig. 1).  
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Fig. 1. Universal similarity function ϕ(ζ), constructed via 
joining empirical values (the plot at the top left, the data 
by A.S. Gurvich (Ref. 7)) with the known asymptotics1: 
ϕ(ζ) = 0.4 (– ζ)–1/3, ζ < 0, |ζ | << ζ0; ϕ(ζ) = 7.0 ζ, ζ >> ζ0; 
ζ0 = 0.05 (the error in measurement of 0.4 coefficient is 
about 20%, 7.0 coefficient – about 40%). 
 

The similarity function depends on the 
stratification parameter ζ = z/L, in which the 
scaling length L is termed the Monin–Obukhov scale 
(or the sublayer thickness of the dynamic 
turbulence). The length L has a fundamental 
significance in theory of thermally stratified 
atmosphere. It was coined by A.S. Monin and 
A.M. Obukhov (Ref. 2) from dimensionality reasons as 

 L = V
2
∗/(αæ

2βT∗), β = g/T ;  

 V
2
∗ = – 1 3v v′ ′ ; αæV∗T∗ = – 3v T′ ′ ,  (4) 

where g is the acceleration of gravity; T  is the mean 
value of absolute temperature; V∗ is the friction 
velocity (the turbulent velocity scale); T∗ is the 
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turbulent scale of the temperature field. For 
indifferent stratification parameter ζ coincides with 
the dynamic Richardson number Rf (Rf = ζ/φ(ζ), 
Ri = Rf/α). Therefore, by analogy with the 
Richardson number, ζ is often termed the Monin–
Obukhov number. Experimental data for the 
α(ζ) = KT/K show that at indifferent (|ζ| ≤ 0.05) and 
unstable (ζ < – 0.05) stratification the α(ζ) is close 
to constant, α ≈ 1.17, Pr ≈ 0.85 (Pr is the turbulent 
Prandtle number).1 However, at a stable 
stratification (ζ > + 0.05) it can appreciably decrease 
(at a strong stability). 

 In expressions (3) and (4) the turbulent 
viscosity coefficient K(z) corresponds to the isotropic 

boundary layer, in which V∗, T∗, and T  are 
considered constant throughout the layer. Therefore, 
the Monin–Obukhov scale L and the Monin–
Obukhov number ζ (at a set height z) are numerical 
parameters of the turbulent flow above the entire 
temperature-stratified region of the ground surface 
under observation. As relations (3) show, the KT 
tensor is anisotropic, i.e., the boundary layer (2)–(4) 
is also anisotropic. Since the anisotropy of a 
boundary layer of the turbulent diffusion (2)–(4) is 
caused only by the KTij temperature tensor 
anisotropy, and other characteristics correspond to 
isotropic layer, the boundary layer (2)–(4) is weakly 
anisotropic.  

Relations (2)–(4) are fundamental in the 
similarity theory of turbulent atmospheric flows, 
commonly called the Monin–Obukhov similarity 
theory. 

The turbulent motions in mountain regions are 
of a special interest. Here, the constancy of the 
Monin–Obukhov scale is not expected above the 
entire territory. There are stable vortex formations 
above the mountain relief. The air flow disturbances 
from such rotary formations are observed up to high 
altitudes (from a mountain height, for example, of 
1 km up to 7–9 km (Ref. 8)). At the same time, in 
atmospheric-optics researches, in particular, in 
researches of the turbulence influence on the optical 
image quality, it is often necessary to deal with the 
anisotropic boundary layer in mountains (the surface 
receiving telescopes are usually located at mountain 
peaks in order to decrease the turbulent distortions). 
However, the turbulence models developed for the 
isotropic boundary layer, are not applicable in 
mountains. Estimation of the anisotropic layer  
model (2)–(4) applicability to mountains has not 
been carried out. Therefore, the experimental testing 
of semiempirical hypotheses (1) or (2) directly for 
mountain conditions is of interest. Earlier, such 
testing was not carried out in a necessary volume, 
because it was connected with the necessity of 
simultaneous recording of experimental data for a 
large number of parameters in each point of a chosen 
mountain region. 

In this work, it is theoretically and 
experimentally shown with the use of semiempirical 
hypotheses of the turbulence theory that an arbitrary 
anisotropic boundary layer can be considered a 

locally weakly anisotropic. Except for the tensor of 
the turbulent thermal diffusivity coefficients, the 
principles of the isotropic layer theory (for plane-
parallel flows) are true in the vicinity of every point 
of the layer. In an arbitrary boundary layer, the key 
turbulence parameter is the varying Monin–Obukhov 
number. It is established, that the anisotropic 
boundary layer can be substituted for an effective 
isotropic layer. Theoretical expressions are obtained 
for the vertical outer scale of turbulence in the 
anisotropic boundary layer; the coincidence of the 
experimental and theoretical values of the outer scale 
is shown.  

1. Theoretical representations for 
dissipation rates of the kinetic energy 
ε and temperature N in the anisotropic 

boundary layer 
The average values of dissipation rates for the 

kinetic energy ε and temperature fluctuations N are 
important physical characteristics of the turbulent 
motion in a medium. They determine the intensity of 
velocity and temperature fluctuations. According to 
the Kolmogorov–Îbukhov law, the structural 
functions of the longitudinal velocity Drr(r) and 
temperature DT(r) fluctuations in the inertial 
interval of r scales are expressed through ε and N:  
 

 Drr(r) = C
2
V r2/3 (C

2
V

 = Ñε2/3),  

 DT(r) = C
2
T r2/3 (C

2
T
 = Ñθε

–1/3N),  (5) 

where Ñ and Ñθ are the Kolmogorov and Obukhov 
constants, respectively, their numerical values with 
10% error are equal1 to 1.9 and 3.0, respectively. 

Parameters C
2
V [(m/s)2 

⋅

 ñm–2/3] and C
2
T [deg2

 

⋅

 cm–2/3] 
are structural characteristics of fluctuations of the 
longitudinal velocity and temperature. Values of ε 
and N are expressed1,3 through the statistical 

moments i jv v ,′ ′  jv T′ ′ :  

 ε = – i j i jv v v / x′ ′ ∂ ∂  + 3v T (g/ ),′ ′ T  

  N = – j jv T T/ x .′ ′∂ ∂   (6)  

In order to present ε and N as functions of 
derivatives of the mean hydrodynamic fields, it is 
necessary to substitute in Eq. (6) the indicated 
statistical moments for their semiempirical 
representations from Eqs. (1) or (2). 

However, for an arbitrary anisotropic boundary 
layer, which is of the greatest interest, the 
applicability of both hypotheses (1) and (2) is 
limited. The hypothesis (1), in which Kij and KTij are 
to be considered different and not isotropic, is 
applicable to description of an arbitrary layer, but it 
is characterized by uncertainty of Kij and KTij 

elements. Therefore, the expressions resulted from 
Eq. (6) can be a basis for the experimental studying 
of Kij and KTij through measuring other quantities in 
these expressions. The hypothesis (2) is more 
detailed, but its application assumes a constancy of 
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the turbulent characteristics (V∗, T∗, L) throughout 
the layer and the presence of approximately even 
underlying surface. 

At the same time, in any boundary layer the 
underlying surface can be considered the 
approximately even in quite small vicinity of every 
point (locally). Hence, it is possible to assume that 
in an arbitrary anisotropic boundary layer (including 
also a layer above the mountain relief) in some small 
vicinity of every observation point, the applicability 
conditions for the weakly anisotropic boundary layer 
of turbulent diffusion (2)–(4) (approximately even 
surface) are locally realized. Then, according to 
Eqs. (2)–(4), in the vicinity of every observation 
point in the layer, the variations of turbulent 
characteristics will be mainly caused, like in an 
isotropic layer, by variation of three independent 

parameters V∗, T∗, .T  
Using Eqs. (3) and (4), the indicated parameters 

can be converted into other three independent 
parameters ζ, V∗, T∗ (with inclusion in their 
composition of the Monin–Obukhov number). The 
Monin–Obukhov number as a stratification 
parameter, takes into account the structure variations 
of the external energy influx then going into the 
turbulence energy, and, hence, is a convenient 
characteristic. The independent quantities ζ, V∗, and 
T∗ are the functions of the radius-vector r of the 
observation point. If to choose in a boundary layer a 
set of observation points in such a way that when 
going from one point to another (along a certain 
trajectory with the arc length s(r)) the number ζ(r) 
changes monotonically, then after the change of 
independent variables s(r) → ζ(r) it is possible to 
consider the dependences V∗(ζ(r)), T∗(ζ(r)). Note 
that if the mean temperature varies weakly in the 
boundary layer, then there are two independent 
parameters V∗ and T∗ instead of three ones, which, in 
turn, can be substituted for ζ and V∗ (or for ζ and 
T∗). Then, along the trajectory, where ζ(r) is 
monotonic, V∗(ζ(r)) [in this case T∗(ζ(r)) depends on 
V∗(ζ(r))], or T∗(ζ(r)) [in this case V∗(ζ(r)) depends 
on T∗(ζ(r))] can be considered. Thus, if two functions 
V∗(ζ) and T∗(ζ) are known along the pointed 

trajectory (one of them is sufficient at T ≈ const), 
then the Monin–Obukhov number ζ becomes the only 
universal parameter determining turbulence 
characteristics in a weakly anisotropic layer. 

 It follows from our measurements obtained in  
a mountain boundary layer (see below, Section 2, 
item 2.6) that the supposition of the local weak 
anisotropy of an arbitrary layer is true at a good 
accuracy. An arbitrary boundary layer, hence, can be 
considered as the locally weakly anisotropic. In an 
arbitrary anisotropic boundary layer all statistical 
characteristics of turbulence become functions of the 
Monin–Obukhov number, and some its value 
corresponds to every point in the layer. 

 According to the accepted assumption of the 
local weak anisotropy a semiempirical hypothesis (2) 

must be used in expression (6), and instead of K and 
KT we use their representations from Eqs. (3) 
corresponding to the isotropic boundary layer 
(K = æV∗z/ϕ(ζ), KT = αK). Then it follows from 
Eqs. (2) (further, the bar above mean values of 
hydrodynamic fields is omitted): 

 V
2
∗ = – 1 3v v′ ′  = KDV, DV = ∂v1/∂x3 + ∂v3/∂x1,  (7) 

 αæV∗T∗ = – 3v T′ ′  = KTD
T, 

 DT = β31∂T/∂x1 + β32∂T/∂x2 + β33∂T/∂x3. 

The immediate experimental testing of 
relations (7) in the mountain anisotropic boundary 
layer (see below, Figs. 19 and 20) has shown, that 
the left part of these relations satisfactorily coincides 
with the right part.  

Substituting into Eq. (6) the semiempirical 
expressions (2), taking into account Eqs. (7) and the 
incompressibility condition, we obtain 

 ε = V
3
∗æ

–1z–1[ϕ(ζ) + ϕV(ζ) – ζ],  (8) 

 ϕV(ζ) = æ2z2V
–2
∗ ϕ(ζ)–1 [Φ12

2  + Φ23
2  + (1/2) 2

ii

i

Φ∑ ],  

 Φij = ∂vi/∂xj + ∂vj/∂xi,  (8a)  

 N = αæV∗T
2
∗ z–1[ϕ(ζ) + ϕT(ζ)],  (9) 

 ϕT(ζ) = T 
–1
∗ z[(β13 

– β31)(∂T/∂x1) + 

 + (β23 

– β32)(∂T/∂x2)] + T 
–2
∗ z2ϕ(ζ)–1[η1(∂T/∂x1)

2 + 

 + η2(∂T/∂x2)
2 + η12(∂T/∂x1)(∂T/∂x2)],  (9a) 

 η1 = β11 – β13β31, η2 = β22 – β23β32,  

 η12 = β12 + β21 – β23β31 – β13β32, β33 = 1. 

Comparing Eqs. (8) and (9) for ε and N, obtained for 
the anisotropic boundary layer, with expressions for ε 
and N in an isotropic layer,1,3 it is easily to see, that 
anisotropic ε and N differ from isotropic ones only by 
the presence of functions ϕV(ζ) (for ε) and ϕT(ζ) (for 
N). These functions are added to the similarity 
function ϕ(ζ). Since ϕV(ζ) and ϕT(ζ) are the 
characteristics of an anisotropic layer, they can be 
called the functions of anisotropy. According to 
Eq. (8), ϕV(ζ) characterizes the rate of energy 
dissipation, therefore, it can be termed the anisotropy 
power function. Function ϕT(ζ) in Eq. (9) 
characterizes the dissipation rate of temperature 
fluctuations; therefore, it can be termed the 
anisotropy temperature function. 

In expressions (8) and (9) it is still necessary to 
pass to the coordinate system, in which the axis 
ox1 = ox is directed along the mean velocity of a 
horizontal wind. In such a system, the transversal 
horizontal component of the mean velocity is absent 
(v2 = 0 along the axis ox2 = oy) and the mean 
velocity vector v has components v = (v1, 0, v3) = 
= (u, 0, w). This fact usually allows one to think, 
that in a certain local vicinity of every point the 
transversal derivatives (along ox2) are small in 
comparison with longitudinal (along ox1) and vertical 
(along ox3 = oz) derivatives. Such assumptions 
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correspond to the frequently accepted conditions of 
the tensor Ôij symmetry in the semiempirical 
hypothesis (1): Ô21 

= Ô12 

= Ô32 = Ô23 

= 0. Hence, 
ϕV(ζ) in Eq. (8à) can be rewritten as 

ϕV(ζ) = 2æ
2z2V

–2
∗ ϕ(ζ)–1[(∂v1/∂x1)

2 + (∂v3/∂x3)
2]. (8b) 

If to take into account the incompressibility 
condition ∂vn/∂xn = 0, then from Eq. (8b) we obtain 
 

 ϕV(ζ) = 4æ
2z2V

–2
∗ ϕ(ζ)–1(∂v1/∂x1)

2  (8c) 

or  

 ϕV(ζ) = 4æ
2z2V

–2
∗ ϕ(ζ)–1(∂v3/∂x3)

2.   

These expressions must be true simultaneously. At 
the same time, according to Eq. (2) 

 2K(∂v1/∂x1 ) = τ1, τ1 = 
nn

v v′ ′ /3 – 1 1v v ;′ ′  

 2K(∂v3/∂x3 ) = τ3, τ3 = 
nn

v v′ ′ /3 – 3 3v v′ ′ .  

Expressing the derivatives through τ1, τ3, K and 
substituting them into Eq. (8c), we found 

 ϕV(ζ) = V
–4
∗ ϕ(ζ)τ

2
1, ϕV(ζ) = V

–4
∗ ϕ(ζ) τ

2
3.

  (8d) 

The requirement of simultaneous fulfilling of 
equations (8d) corresponds to supposition on isotropy 
of Kij in Eq. (2). A comparison of experimental and 
theoretical (calculated by Eq. (8b)) values of ϕV(ζ) 
for an anisotropic boundary layer will be conducted 
further in Section 2, but a preliminary estimate of 
the error in the supposition can be made just now 
based on measurements of turbulent pulsations of 
velocity components. 

Measuring results on the root-mean-square 
deviations of the turbulent fluctuations of the velocity 
components in the mountain anisotropic boundary 
layer in a wide range of the Monin–Obukhov 
number values (from stable to super unstable local 
temperature stratifications, –581 ≤ ζ ≤ 0.3, see below, 
Section 2) are presented in Fig. 2.  

 

–0.01 –0.1 –1 –10 –100 

1

3

0.4 0.1 0.01 

τ
1/2

ii , m/s 

ζ

τ
1/2

11  

τ
1/2

22  

τ
1/2

33  

–1000

0.2 

 
Fig. 2. Root-mean-square deviations of the wind velocity 
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As is seen, the proportions between pulsations of 
different components hold, on the average, in the 
entire range of ζ variation. Therefore, averaging the 
experimental data over the entire ζ range, we obtain 
(in [m2/s2])  

 < 11v v′ ′ > = 0.60, < 22v v′ ′ > = 0.47, < 3 3v v′ ′ > = 0.20, 

that corresponds to <τ1> = – 0.17, <τ3> = 0.22. 

Then deviations of τ
2
1
 and τ

2
3
 values (in both sides) in 

Eq. (8d) from their total mean do not exceed 25%. 
Hence, the inherent measurement error for ϕV(ζ), 
arising from the assumption of Kij isotropy in 
Eq. (2), does not exceed 25% as well. The experience 
in measuring turbulence characteristics in atmosphere 
shows such error to be quite satisfactory. 

Note that since measurements of derivatives 
with respect to hydrodynamic fields in atmosphere 
are usually accompanied by significant errors, the 
relation (8b), smoothing the measuring errors, is 
better suited to measurements of the anisotropy 
power function ϕV(ζ). 

Expression (9a) for the anisotropy temperature 
function ϕT(ζ) also can be simplified, using symmetry 
equalities of KTij in Eq. (3) (β12 = β21 = β23 = β32 = 0): 

 ϕT(ζ) = (β13 – β31) T 
–1
∗ z(∂T/∂x1) + T 

–2
∗ z2ϕ(ζ)–1 × 

 × [(β11 

– β13β31) (∂T/∂x1)
2

 + β22(∂T/∂x2)
2].  (9b) 

In the coordinate system with the axis ox1 directed 
along the mean velocity of the horizontal wind, it 
follows from Eq. (9b)  

  ϕT(ζ) = (β13 – β31)T 
–1
∗ z(∂T/∂x1) +  

 + (β11 – β13β31)T 
–2
∗ z2ϕ(ζ)–1(∂T/∂x1)

2.  (9c) 

Thus, as is seen from Eqs. (8c) and (9c), the 
assumption of the local weak anisotropy of an 
arbitrary boundary layer reduces the calculation of 
ϕV(ζ) and ϕT(ζ) (as well as the dissipation rates ε and 

N) to determination of the turbulence scales V∗ and 
T∗, the Monin–Obukhov number ζ, and two 
longitudinal derivatives ∂T/∂x1, ∂v1/∂x1. In the 
isotropic boundary layer, the longitudinal derivatives 
and v3 are zero, hence, ϕV(ζ) = ϕT(ζ) = 0.  

2. Experimental testing 
of semiempirical hypotheses  

in the anisotropic boundary layer 
In Section 1 of this work, the assumption of 

local weak anisotropy of an arbitrary boundary layer 
has been made. Based on this assumption and using 
semiempirical hypotheses of the turbulence theory, 
theoretical expressions for fundamental turbulence 
characteristics (average dissipation rates ε and N) for 
the anisotropic boundary layer were obtained.  

In the given Section, the results of experimental 
testing of the obtained expressions for dissipation 
rates ε and N, which, according to Eqs. (8) and (9), 
are reduced to results of the experimental testing of 
theoretical representations for the power and 
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temperature anisotropy functions ϕV(ζ) and ϕT(ζ) are 
described. It is shown, that a satisfactory agreement 
between theory and experiment takes place.  

Turbulent characteristics were measured in the 
atmospheric boundary layer in mountains (the Baikal 
astrophysical observatory of the Institute of Solar-
Terrestrial Physics of the Siberian Branch of the 
Russian Academy of Science, the settlement 
Listvyanka in Irkutsk Region, coast of Lake Baikal). 
The measurement region included flanks and a peak 
of the mountain on which the Big Solar Vacuum 
Telescope (BSVÒ) is situated. Because this mountain 
has no own name, for brevity we call it the BSVÒ-
mountain. The mountain height above the sea level is 
680 m. The total length of the measuring path is 
about 3 km. Characteristics of the atmospheric 
turbulence were fixed basically at a height of 2.7 m 
from the underlying surface. In total, 5 observation 
sessions with various types of the regional 
meteosituation were carried out. Measurements were 
made in 73 different points of the path. The time of 
measurements was from October 12 to October 28, 
2002.  

2.1. Equipment  

The METEO-2Ì mobile ultrasonic meteosystem, 
developed at the Institute of Atmospheric Optics SB 
RAS was used in the measurements. The device 
measures the sound velocity having passed between 
two sensors of its measuring head. The measuring 
head is represented by two identical metal rings of 
12 cm radius, located crosswise to each other with a 
common center. In the point of crossing, the rings are 
attached to the top of the cylindrical foundation of 
about 3 cm radius and 20 cm length. The ultrasonic 
sensors are located along the perimeters of each ring. 
The block for measuring pressure and humidity (a 
cylinder of about 3 cm in radius and 6 cm in length) 
is attached to the bottom side of the foundation at 
15 cm distance from its axis. The measuring head is 
established on a metal mast (diameter of 3.5 cm) of a 
variable length.  

 Four measuring channels “source–receiver” are 
involved in the system. Measurement frequency is 
determined by the velocity of the sound propagation 
in air and the equipment reliability. For each 
channel, the reading frequency is 10 Hz. A two-level 
procedure is used in the processing of measurement 
results. The preprocessing mainly consists in 
averaging high-frequency measurements (at a 10 Hz 
frequency), which proceeds in the measuring head’s 
processor and serves to improve the equipment 
reliability. The final processing is performed at a 
portable computer of “Note Book” type. The 
averaging time is set by the observer and, depending 
on the measuring mode, can vary from 1 minute to 
several days. 

The meteosystem records 89 parameters (at a 
height of the measuring head’s center), stores the 
measuring results simultaneously as a binary file and 

a text report. The main measurable characteristics 
are: mean air temperature (°Ñ); mean components of 
the wind vector (m/s), including modulus of the 
averaged velocity vector (m/s), modulus (m/s) and 
direction (deg) of the averaged horizontal velocity 
vector, modulus (m/s) and direction (upward-
downward) of the averaged vertical component of the 
velocity vector; absolute (g/m3) and relative (%) air 
humidity; atmospheric pressure (mm Hg); the 
structural characteristics of the temperature 

fluctuations Ñ
2
T

 (deg2
 ⋅ ñm–2/3), longitudinal component 

of the wind velocity Ñ
2
V

 ((m/s)2 ⋅ cm–2/3), an acoustic 

index of refraction Ñ
2
n,a (m

–2/3), and optical index of 

refraction Ñ
2
n
 (ñm–2/3). Besides, the system records 

the root-mean-square deviations of temperature, 
velocity vector components and directions; fixes 
coefficients of correlation, asymmetry, and excess 
(between and for basic measurable parameters); 
measures the total energy of turbulent motions 
(m2/s2), the moments of momentum and heat flux 
(m2/s2), vertical flux of momentum and heat; 
dissipation rates of the kinetic energy ε (m2/s2) and 
the temperature fluctuations N (deg2/s); the 
turbulent scales of the Monin–Obukhov scale L (m), 
temperature T∗ (°Ñ), and wind velocity V∗ (m/s); 
the Monin–Obukhov number ζ (ζ = z/L), and other 
characteristics. The system records also the frequency 
spectra of temperature fluctuations and the vector 
components of wind velocity.  

The system has passed a full set of metrological 
tests, including tests in altitude/temperature and 
humidity/temperature chambers, as well as in wind 
tunnel. The systematic measurement errors were 
determined by the device calibration, and for basic 
averaged parameters are 0.3°Ñ (for temperature) and 
0.15 m/s (for vector components of wind velocity). 
However, the device sensitivity (its capability to 
distinguish different measurements at the same 
systematic error during long-time observations) is 
essentially less and for random values makes up 
0.002°Ñ and 0.03 m/s for temperature and vector 
components of wind velocity, respectively. Systematic 
error in measuring the pressure is 2 mm Hg (at a 
sensitivity of 0.01 mm Hg), in measuring the relative 
humidity it is 0.1%. 

The upper boundary of the instrument 
transmission band is determined by the frequency of 
generating results and makes up 10 Hz. The 
averaging arised because of the device time constant 
leads to cutting high frequencies in the spatial 
turbulence spectrum. Therefore, the equipment is not 
sensitive to turbulent heterogeneities, which sizes, for 
example, at a mean wind velocity of 1 m/s are less 
than 10 cm. Such a time constant limits possibilities 
of studying small-scale turbulence components 
experimentally. At the same time, it practically does 
not affect the accuracy in measuring random 
characteristics of meteofields. Thus, the direct 
measurements of the turbulence spectra show that at 
recording random temperature and wind velocity the 
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error brought by the device time constant, usually 
does not exceed 1%. This is due to insignificant 
contribution of the cut portion of the spectrum in the 
total energy of fluctuations. 

As is generally known,1,3 the averaging time in 
measurements of the turbulent parameters should be 
chosen for the condition, that the length scale of the 
averaged turbulent flow (mean wind velocity 
multiplied by the averaging time) essentially exceeds 
the outer scale of turbulence in the direction of the 
mean flow (or, that is the same, the averaging time 
should essentially exceed the characteristic time scale 
of correlation of the investigated field). Then the 
temporal means are statistically stable. Measurements 
in the ground layer above some surface are usually 
conducted at the averaging time not less than 100 s 
(Refs. 1 and 3). The length scale for wind velocity of 
1–10 m/s corresponding to this time is 0.1–1 km 
and exceeds the outer scale of turbulence. In case of 
uneven surface, the longitudinal outer scale of 
turbulence in the ground layer is, obviously, 
determined by typical distance between different 
surface unevennesses or inhomogeneities. For a 
mountain relief with inhomogeneous surface, such a 
near-surface distance is insignificant and can be 
estimated by tens of meters. Hence, measurements in 
the ground layer above uneven surface can be carried 
out with averaging time of about 100 s. In this work, 
when recording turbulence parameters in one point, 
the averaging time is 2 minutes.  

The relative error in measuring structural 
characteristics is determined, first of all, by the 
device sensitivity and decreases with the increase of 
mean wind velocity, averaging time, and values of 
structural characteristics. So, for example, in conditions 

of relatively weak turbulence (Ñ
2
n = 5⋅10–16

 ñm–2/3) at 
an averaging time of 2 minutes and a mean wind 
velocity of 0.5–10 m/s the relative error in 

measuring Ñ
2
n is within 0.4–14% (0.4, 7, 14% for 

wind velocity of 10; 1; 0.5 m/s, respectively). 

Characteristics Ñ
2
T and Ñ

2
V

 are measured with the 
same errors. Dissipation rates ε and N are measured 
based on relations (5) (Kolmogorov–Îbukhov law). 
Hence, the relative error in measuring ε (N) 

practically is a sum of errors of Ñ
2
V and the 

Kolmogorov constant Ñ (Ñ
2
T and the Îbukhov 

constant Ñθ).  
After conducting field measurements, the control 

testing of the meteosystem has been made, which has 
confirmed the reliability of the obtained data. 

2.2. Requirements to the duration  
of observation sessions 

As is well-known,1,3,6 when measuring 
atmospheric turbulence parameters in an isotropic 
boundary layer (plane-parallel flows above even, 
homogeneous, and equally heated surface), it is 
required that the observation session was carried out 
approximately in the same regional meteosituation 
with some established mode of the turbulent motions. 

During field measurements, it is necessary to exclude 
the influence of daily variations and noticeable 
changes in the overcast regime and, in particular, 
variable overlaps of sun by clouds. Then stratification 
parameters responsible for turbulent meteosituation 
above the territory of interest (for example, the 
Monin–Obukhov number or the Richardson number) 
are approximately constant and the measured time-
average values are stable (they depend only on the 
type of the regional meteosituation). 

The requirement of the constant regional meteo- 
situation is not principal for measurements in the 
mountain anisotropic boundary layer (according to 
results from Section 1), where all turbulence 
characteristics become functions of the Monin–
Obukhov number, and a particular number value 
corresponds to every point in the layer. However, to 
be sure, a series of measuring sessions must be 
conducted with approximately constant regional 
meteosituation in each of them. From comparison of 
results, it is possible to find the degree of influence 
of the meteosituation type.  

Besides, as follows from Eqs. (7), (8b), (9c), to 
compare the experiment and theory, it is necessary to 
measure various spatial derivatives of meteofields. At 
the same time, the approximation of derivatives by 
difference relations usually leads to significant errors. 
They can be essentially reduced when using data 
obtained in stable meteosituations. 

Thus, to carry out necessary measurements, a 
series of sessions must be conducted with 
approximately constant meteosituation in each. 

 Since the known stratification parameters (the 
Monin–Obukhov number or the Richardson number) 
are different in a mountain boundary layer, they can 
not serve indicators of some general meteosituation in 
a mountain region. Apparently, such indicators are 
stratification parameters averaged over many surface 
points. However, during measurements, such efficient 
parameters are not known in advance. 

In this connection, the meteosituation in our 
measurements was estimated, first of all, from the 
stability of the solar radiation intensity, as well as 
from the amount and motion of clouds. During the 
whole measuring session, the Sun must be closed or 
opened by clouds without periodical changes of the 
situation. In October, such stability in the region of 
the Baikal astrophysical observatory is usually 
observed in the second half of the day, beginning 
from 1–2 p.m. of the local time. Durations of the 
highly stable meteosituation for the open Sun 
(overcast is insignificant and, as a rule, near the 
horizon) and for the closed Sun (complete and dense 
overcast) are approximately identical: from 3 to 5–
7 hours. However, unstable meteosituations, 
characterized by significant broken (or complete, but 
not dense) overcast (mostly in the first half of the 
day) are more frequent. The duration of the open Sun 
at the broken overcast is usually less than 1–
1.5 hours. 

Except for the qualitative control for the 
overcast state, the dynamics of the regional turbulent 
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meteosituation for some time interval can be 
estimated from measurements of the near-surface 

values of Ñ
2
n (or Ñ

2
T and Ñ

2
V), at one point. The 

preliminary measurements conducted in the second 
half of the day at the same place have shown that in 
case of constantly open Sun at approximately 
identical amount of clouds the near-surface values of 

Ñ
2
n can vary (decrease) 1.5–2 times for 2–3 hours 

because of the daily solar motion (the result varies 
depending on a geographical position of the 
measuring point). At complete and dense overcast, 
the same variation occurs for a greater time, 

approximately, for 2–4 hours. The variation of Ñ
2
n is 

stronger in case of instable meteosituation, when the 
Sun is periodically opened or covered by clouds, or 
the density of clouds covering the Sun varies. 

Obviously, the duration of observation sessions 
should be minimized. Once the recording of turbulent 
characteristics at one point proceeds 5–7 minutes, 
including a two-minute measuring time, the time for 
activation and deactivation of the equipment, and the 
time necessary for going from one observation point 
to another, then at a highly stable meteosituation of 
duration no less than 3 hours, about 30 points can be 
recorded without an appreciable error for a measuring 
session. At a low-stable meteosituation, the 
measuring session should not exceed 1–1.5 hours.  

Five measuring sessions were carried out for all 
time of the expedition (from October 12, to October 
28, 2002). The first session was carried out on 
October 17 in the first half of the day (sunny 
morning, wind of 1–2 m/s, temperature of 1–0°C, 
humidity of 49–61%). The second one was conducted 
on October, 17 in the second half of the day 
(complete overcast, white haze, wind of 0.3–5 m/s, 
temperature of 0.4–+1.7°C, humidity of 46–62%), 
the third one – on October 18 in the second half of 
the day (sunny day, wind of 1–8 m/s, temperature 
of 0–+ 3.7°C, humidity of 35–63%), the fourth and 
the fifth sessions were conducted on October 22 in 
the second half of the day (complete overcast, wind 
of 1–3 m/s, temperature of 0.9–+ 1.1°C, humidity of 
37–57%). In first three sessions measurements were 
carried out along the entire path, and covered large 
areas; in the fourth and the fifth sessions – only on 
the peak of the BSVÒ-mountain, but with a better 
resolution. During the fifth session, high-altitude 
measurements in the low 5-meter layer were carried 
out. During the first and the third sessions, the 
weather was clear and sunny with similar stable 
meteosituations; during the second, fourth, and fifth 
sessions the sun was covered with clouds. 

2.3. Characterization of the measuring path 

The measuring path was chosen so that to 
combine recording of turbulence parameters with 

recording of near-surface fields of Ñ
2
n. The values of 

Ñ
2
n were necessary for forecasting BSVT image 

quality. Therefore, the measuring path included 
flanks and the peak of the BSVÒ-mountain. 

According to the purpose of measurements, the 
path along the BSVÒ-mountain flanks should fall in 
the observation sector of the BSVT, i.e., it had to go 
along the projection of the optical path to the 
underlying surface strictly southward from the 
telescope, which was oriented from north to south. 
However, because of the necessity to use an 
automobile during measurements, the path had to be 
passable. Therefore, the actual directions of the route 
along the mountain flanks and canyons sometimes 
differed approximately by 20–35° from the north–
south direction.  

All path was divided into two segments HO and 
OB (Fig. 3). The point H was located at the field 
office of the BSVT administration. The HO segment 
passed along the mountain flank neighboring to the 
BSVÒ-mountain. The point O was the conditionally 
junction point, where the canyon between two 
mountains ended.  
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Fig. 3. Scheme of the measurement path: ϕ is the latitude,  
ε is the longitude; (ϕM, εM) are the latitude and longitude of 
the referent point M. The path includes the HO, OB, HOB 
routes. Orientations of mountain ridges and canyons: (11) 
the ridge of the BSVÒ-mountain; (22) the neighboring 
mountain’s ridge; (33) the canyon; (PP) the reference 
vertical plane. 
 

Beginning from the point O, the path goes along 
the northern (back) flank of BSVT-mountain, rises to 
the peak and then goes down along the south (face) 
flank to Lake Baikal up to the point B, which is 
situated at the lake coast line close to water. All the 
coordinates in Fig. 3 are related to some reference 
point M, which is situated on the lake surface in 
several hundreds of meters from the coast near the 
point B.  

When investigating the behavior of turbulence 
characteristics throughout the path (usually, at a 
height of 2.7 m above the surface), it is convenient to 
use the central earth angle α as an independent 
argument. Then the route segments corresponding to 
the observation sessions 1–3, are sewed together in 
one route HOB. One second in the angle α 
approximately corresponds to 31 m on the geoid 



764   Atmos. Oceanic Opt.  /October  2005/  Vol. 18,  No. 10 V.V. Nosov et al. 
 

 

surface, therefore, when moving along the trajectory 
of the compound route, the central angle α increases. 
Sometimes, the route at the peak of the BSVÒ-
mountain (the 4th session, with a more detailed 
resolution) is added to the HOB route (sessions 1–
3). In coincident points (few in number) the values 
from only one observation session were taken. 

The recorded altitude profile (relative to the sea 
level) of the measurement path is presented in Fig. 4. 
For comparison, the altitude profile of the path 
fragment OB is presented as well, each point of 
which is projected on the auxiliary reference vertical 
plane PP.  
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Fig. 4. An altitude profile of the measurement path: h is the 
height above the sea level, α is the central earth angle. 
Dark points correspond to the HOB route, light points – to 
the OB route along the reference plane PP (projections of 
route points OB on the PP plane). 
 

This projection allows estimate how zigzag is 
the route, its maximal deviations from the fixed 
direction set by the PP plane, as well as deviations 
from the telescope orientation direction (north–
south). As Fig. 4 shows, the actual altitude profile of 
the BSVÒ-mountain corresponding to the projection 
on the PP plane, is more steep than the profile along 
the measurement path. 

Deviations of the altitude profile of the 
measurement path from the averaged altitude of 
BSVÒ-mountain profile are 5–10 m (both upwards 
and downwards). The underlying surface along the 
path is covered with rather thin (basically, pine) 
wood of 7–15 m height. Along some route legs the 
wood is absent, and the rocks covered with low grass 
are observed.  

2.4. General measurement results of the 
turbulence characteristics in the mountain 

boundary layer  

It is experimentally found that the turbulence in 
the mountain boundary layer is essentially 
anisotropic. Even at a stable regional meteosituation 

the structural characteristics Ñ
2
T, Ñ

2
V, Ñ

2
n can vary by 

more than 2 orders of magnitude depending on the 
position of the recording point. They can be 
significantly affected by surface areas with increased 
heat exchange and high thermal capacity (for 

example, the surface of Lake Baikal), where Ñ
2
T, Ñ

2
V, 

and Ñ
2
n are practically independent of the 

meteosituation type. 
Large heterogeneities of relief and artificial 

cultures create stable rotary perturbations of 
airflows. Wind maps of the observation region are 
presented in Figs. 5 and 6. As is seen in Fig. 5, 
airflows at flanks of two parallel mountain ridges are 
directed to the canyon bottom. In similar 
meteosituations a stability of such flows is observed 
(see Fig. 5 near the point O).  
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Fig. 5. Wind map of the measurement route at a constant 
meteosituation. Arrows with white triangles refer to the 1st 
session, arrows with black triangles – to the 3rd session. 
The measurement route is designated by the solid line 
(routes HO, OB, HOB). 
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Fig. 6. Wind map of the BSVÒ-mountain peak (a 3D vector 
field of the mean wind at the mountain peak, on the 
platform near the BSVÒ, which border is shown by solid 
line): ϕ is the latitude, ε is the longitude, (ϕM, εM) are the 
latitude and the longitude of the reference point M. The 4th 

observation session, measurements at a height of 2.7 m from 
the underlying surface. Vertical straight lines near points 
show the magnitude of vertical component in the mean 3D-
wind vector. 

 
At the BSVÒ-mountain peak wind flows from 

the lake are reflected from the high (26 m) BSVT 
building and, as Fig. 6 shows, the stable rotary flows 
take place there, in particular, near points 8, 10, 11, 
and 14 (Fig. 6). Near centers of such vortex 
formations small values of the wind velocity vector, 
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an increased pressure, and a lowered humidity are 
observed. 

 Around the centers the local temperature 
stratification can vary from extremely unstable to 
stable. It is evident, for example, in Fig. 7, in which 
the recorded field of the Monin–Obukhov numbers ζ 
corresponds to a height of 2.7 m above the peak of 
the BSVÒ-mountain. Thus, the local superstrong 
unstable stratification (ζ = –388) in the same as in 
Fig. 6 point 8 is observed. However, nearby, in the 
point 11 (in several tens of meters from the point 8), 
the Monin–Obukhov number already corresponds to 
the local stable stratification (ζ = +0.3). 
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Fig. 7. The field of Monin–Obukhov number ζ values at 
the BSVT-mountain peak. The forth measurement session at 
a height of 2.7 m from the underlying surface. Separately, ζ 
values are shown strongly differing from stratification 
boundaries ⎪ζ⎪= 0.05; for other points: –0.34<ζ<–0.05. 

 

As Fig. 8 shows, numbers ζ measured at the 
same height of 2.7 m vary in the same observation 
point as the regional meteosituation varies.  
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Fig. 8. The Monin–Obukhov number ζ in the measurement 
sessions 1–3: α is the central angle of earth. Measurements 
at a height of 2.7 m from the underlying surface. Light 
circles refer to session 1; asterisks – to session 2; dark 
squares – to session 3.  

The fundamental turbulence characteristics vary 
essentially in the mountain boundary layer as well: 
mean dissipation rates of the kinetic energy ε (Fig. 9) 
and temperature N (Fig. 10), as well as the turbulent 
scales of temperature T* (Fig. 11) and velocity V* 
(Fig. 12).  
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Fig. 9. Mean dissipation rate of the turbulence kinetic 
energy ε in a mountain boundary layer for all measuring 
sessions, depending on the Monin–Obukhov number ζ. 
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Fig. 10. Mean dissipation rate of temperature fluctuations 
N in a mountain boundary layer for all measuring sessions 
depending on the Monin–Obukhov number ζ.  
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Fig. 11. Turbulent scale of the temperature field T* in a 
mountain boundary layer for 1–4 measuring sessions, 
depending on the earth central angle α. 
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Fig. 12. Turbulent scale of the velocity V* field in a 
mountain boundary layer for the 1–4 measuring sessions, 
depending on the earth central angle α. 

 

The mean temperature T (°Ñ) is also variable. 
The values of the Kolmogorov inner scale of 
turbulence l0 were obtained, using the measured 
dissipation rates of ε, by the formula l0 = ν3/4

ε
–1/4, 

where ν = 1.3 . 10–5 m2/s is the air kinematic 
viscosity at 0°C. The l0 values are in the range from 
0.3 to 1.2 mm (mean of 0.64 mm). The Kolmogorov 
inner scale is inversely proportional to the intensity 
of airflow velocity fluctuations. The stronger are the 
velocity fluctuations increasing near large obstacles, 
the less is the scale.  

2.5. Measurement results for hydrodynamic 
field derivatives 

The experimental values of derivatives ∂T/∂z, 
∂T/∂x, ∂u/∂z, ∂u/∂x, ∂w/∂z, ∂w/∂x (mean velocity 
of horizontal wind is directed along ox axis, z is the 
height), necessary for comparison of the experiment 
with the theory, were found from the usual difference 
relations approximating the derivatives. For example, 
for the point z = z0, located in the interval 
z1 

< z0 

< z2, (∂T/∂z) | z=z0
 ≈ [T(z2) – T(z1)]/(z2 – z1). To 

decrease the approximation errors, data obtained in 
the same stable meteosituation (in one observation 
session) were used in the difference relations.  

The vertical derivatives of mean temperature 
∂T/∂z were found from T measurements at different 
altitude levels (the 5th session at the peak of the 
BSVÒ-mountain, only 9 points). The vertical 
derivatives of the longitudinal (∂u/∂z) and vertical 
(∂w/∂z) components of mean velocity, in addition to 
direct measurements at different altitude levels, were 
restored also from the measurements at one height 
(z = 2.7 m) in view of the fact that velocity 
components (u, w) are zero (the adhesion condition) 
on the earth surface.  

The longitudinal derivatives of temperature and 
velocity components (∂T/∂x, ∂u/∂x, ∂w/∂x) were 
restored from the near-surface measurements at one 
height (z = 2.7 m). As the derivative approximation 

by the difference relations gives the least error at 
small distances between two selected points, some 
restrictions were imposed on the distances. Both 
vertical (z2 – z1) and horizontal (x2 – x1) distances 
should not exceed the sizes of the outer scale of 
turbulence in the vertical and longitudinal horizontal 
directions. As it follows from our measurements (see 
below Fig. 26), the vertical outer scale of turbulence 
in the ground layer can be estimated by meters and 
tens of meters. The longitudinal outer scale of 
turbulence is, obviously, determined by the typical 
distance between the surface unevennesses or 
inhomogeneities. For a mountain relief with the 
inhomogeneous surface such distance is insignificant 
and on the average makes up about 50 m.  

Note that calculating the longitudinal 
derivatives, we actually find the derivative values 
along the measurement path, i.e., derivatives along 
the vector s direction, connecting two observation 
points. Then, for example, for mean temperature we 
obtain dT/ds = ∂T/∂x cos (x, s) + ∂T/∂y cos (y, s), 
where (x, s), (y, s) are the angles between the îx, îy 
axes and the vector s direction. The direction îx of 
mean wind velocity (and the longitudinal 
component), as a rule, does not coincide with the 
vector s direction (cos (x, s) ≠ 1, cos (y, s) ≠ 0). In 
view of the fact that transversal derivatives to 
average wind velocity (with respect to y) are usually 
essentially less then the longitudinal ones (with 
respect to x), then we find the formula, allowing us 
to restore the longitudinal derivatives ∂T/∂x ≈ 
≈ (dT/ds)/cos (x, s) for moderately large angles 
between directions îx and s (|cos (x, s)| ≥ 0.4).  

The measuring results for the hydrodynamic field 
derivatives are presented in Figs. 13–16, and further 
also in Figs. 19 and 20. 
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Fig. 13. Experimental values of ∂T/∂x in a mountain 
boundary layer for all measuring sessions. ∂T/∂x is the 
longitudinal (with respect to the direction îx of mean 
horizontal wind velocity) derivative of mean air temperature 
T, dT/ds is the derivative with respect to the trajectory of 
the measurement path. 

 

Note that in the available similarity theory 
dimensionless quantities depending on dimensionless 
parameters are commonly used. Dimensional 
derivatives of hydrodynamic fields are not considered 
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independently. However, they are necessary to 
compare theory with experiment. 
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Fig. 14. Experimental values of ∂u/∂x in a mountain 
boundary layer for all measuring sessions. ∂u/∂x is the 
longitudinal (with respect to the îx direction of mean 
horizontal velocity) derivative of the longitudinal 
component u of mean wind velocity, du/ds is the derivative 
with respect to the trajectory of the measurement path. 
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Fig. 15. Experimental values of ∂w/∂z in a mountain 
boundary layer for all measuring sessions. ∂w/∂z is the 
vertical (with respect to z) derivative of the vertical 
component w of the mean wind velocity. 
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Fig. 16. Experimental values of ∂w/∂x in a mountain 
boundary layer for all measuring sessions. ∂w/∂x is the 
longitudinal (with respect to the îx direction) derivative of 
vertical component w of the mean wind velocity, dw/ds is 
the derivative with respect to the trajectory of the 
measurement path. 

2.6. Anisotropy functions; the experimental 
testing of the mountain boundary layer for 

local weak anisotropy  

According to results from Section 1, the 
requirement of constant regional meteosituation is 
not principal for measurements in a mountain 
anisotropic boundary layer. In such a boundary layer 
all turbulence characteristics become functions of the 
Monin–Obukhov number. The experimental results 
for scales of temperature T* and velocity V* for all 
observation sessions depending on the Monin–
Obukhov number magnitude are presented in Figs. 17 
and 18. In every session the regional meteosituation 
is described by a particular set of Monin–Obukhov 
numbers varying in the entire registered range:  
–581 ≤ ζ ≤ 0.3. Joining all observation sessions in 
one, as Figs. 17 and 18 show, does not lead to a 
significant scatter of data.  
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Fig. 17. Turbulent scale of the temperature field T* in a 
mountain boundary layer for all measuring sessions, 
depending on the Monin–Obukhov number ζ. 
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Fig. 18. Turbulent scale of the velocity field V* in a 
mountain boundary layer for all measuring sessions, 
depending on the Monin–Obukhov number ζ. 

 

All the data are stably grouped near certain 
smoothed dependences presented in Figs. 17 and 18. 
Some scattering of points observed in the stable 
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stratification area (ζ > +0.05), uses to appear in the 
majority of measurements of various turbulent 
characteristics in atmosphere (according to works of 
different authors). A.S. Monin and A.M. Yaglom 
(Ref. 1) explain this by the turbulence intermittency 
in conditions of stability and, hence, by insufficiency 
of the usual averaging time. Thus, it follows from 
our measurements, that in the mountain boundary 
layer the experimental results, as functions of the 
Monin–Obukhov number, can be united 
independently of the regional meteosituation type (at 
least, for meteosituations observed for the time of our 
measurements). 

Figures 19 and 20 present the results of 
comparison of the semiempirical theory with 
experiment for the functions  

 DT = β31∂T/∂x1 + β33∂T/∂x3 

and 

 DV = ∂v1/∂x3 + ∂v3/∂x1  

in a mountain boundary layer (see relations (7), in 
which at a mean wind velocity along the axis x1, the 
transversal derivative ∂T/∂x2 can be neglected).  

In case of isotropic boundary layer (when ζ is 
fixed, the longitudinal derivatives are absent and 
DT = ∂T/∂z, DV = ∂u/∂z), relations (7) are among 
the basic ones in the semiempirical turbulence theory 
(the similarity theory), which are reliably confirmed 
experimentally.1,3 In an anisotropic layer all 
components of equalities (7) are functions of ζ 
varying at an arbitrary moving of the observation 
point. As is seen in Figs. 19 and 20, in a wide range 
of ζ variation the theory well coincides with the 
experiment. The account for longitudinal derivatives 
further improves the coincidence.  
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Fig. 19. Comparison of experimental and theoretical values 
of the vertical (with respect to z) derivative of the mean air 
temperature ∂T/∂z in a mountain boundary layer. Light 
squares denote experimental values of ∂T/∂z for the bottom 
5-meter layer nearby the BSVÒ (the 5th observation 
session). Light and black circles refer, respectively, to 
theory and experiment for function DT in Eqs. (7). The 
straight lines are asymptotics of DT at |ζ| → 0 and ζ → – ∞. 
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Fig. 20. Comparison of experimental and theoretical values 
of the vertical (with respect to z) derivative of the 
longitudinal component (u) of mean wind velocity ∂u/∂z in 
a mountain boundary layer. Black circles denote 
experimental values of ∂u/∂z in all observation sessions. 
White circles and white squares, respectively, refer to 
theory and experiment for the function DV in Eqs. (7). 
Straight lines are asymptotics of DV at |ζ| → 0 and ζ → – ∞. 

 

Relations (7) and (3) show that functions DT 
and DV can be represented for the anisotropic layer as 

 DT = T*(ζ)ϕ(ζ)/z, DV = V*(ζ) ϕ(ζ)/(æz),  

where T*(ζ) and V*(ζ) are functions of ζ (see 
Figs. 17 and 18). The same representations are also 
true for isotropic layer, but T* and V* in these 
formulas are constant.  

As the measuring results demonstrate (see 
Figs. 19 and 20), there are local areas in the 
anisotropic layer, where the longitudinal derivatives 
in functions DT and DV can be neglected as compared 
to the vertical ones. This means that the isotropic 
layer mode is realized for DT and DV in such areas. A 
plane-parallel flow above an extended surface area 
can be considered simply an expansion of a certain 
small local area with the isotropic mode. Hence, in 
extended isotropic layers the constant T* and V* are 
not arbitrary, but, as is seen from theoretical 
representations for DT and DV, are determined by a 
particular magnitude of ζ. 

The results of comparison of the semiempirical 
theory with the experiment for power and 
temperature anisotropy functions φV(ζ), ϕT(ζ) are 
presented in Figs. 21 and 22. Figures show their 
satisfactory coincidence. Theoretical values of these 
functions turn to be close to experimental ones in a 
wide range of variation of the Monin–Obukhov 
number (from stable to superstrong unstable local 
temperature stratification, –581 ≤ ζ ≤ 0.3).  

The anisotropy functions have maxima in 
different areas of ζ variation. If ϕT(ζ) is concentrated 
mainly in the range |ζ| d 0.1 then ϕV(ζ) is in the 
range –1 t ζ t –1000. Beyond these intervals both 
functions are close to zero, achieving in maxima 
values close to 1000. Despite of the low measurement 
accuracy of the hydrodynamic field derivatives, the 
coincidence is observed at the φV(ζ) and φT(ζ) 
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variations more than by three orders of magnitude. 
Therefore, the coincidence cannot be a consequence 
of the experimental errors. 
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Fig. 21. Comparison of experimental and theoretical results 
for the anisotropy temperature function. 
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Fig. 22. Comparison of experimental and theoretical results 
for the anisotropy power function. 

 

Since φV(ζ) and ϕT(ζ) determine the ε and N 
dissipation rates, it follows from Figs. 21 and 22 that 
the effect of anisotropic boundary layer on power (ε) 
and temperature (N) turbulence characteristics is 
essentially asymmetric. Appearance of maxima of the 
anisotropy function in different ranges of ζ variations 
is connected with corresponding behavior of T*(ζ) 
and V*(ζ) in these ranges. As is seen in Figs. 17 and 
18, at small values of |ζ| (|ζ| → 0) T*(ζ) → 0, but at 
large negative values of ζ (ζ → –∞) V*(ζ) → 0. 
Therefore, if the derivatives ∂T/∂x1 (at |ζ| → 0), 
∂v1/∂x1 or ∂v3/∂x3 (at ζ → –∞) in these ranges are 
limited, then, according to Eqs. (9c) and (8b) 
φT(ζ) → ∞ at |ζ| → 0 and φV(ζ) → ∞ at ζ → –∞ (due 
to normalization on the scales T* and V*).  

In the variation interval –0.1 t ζ t –1, where 
both anisotropy functions are close to zero, 
expressions (8) and (9) for anisotropic dissipation 
rates ε and N coincide with expressions for isotropic 
rates of dissipation. Hence, in this interval of ζ 
values in the anisotropic boundary layer the isotropic 
layer mode is realized. 

Thus, it follows from our measurements in a 
mountain boundary layer that the assumption of the 
local weak anisotropy of an arbitrary boundary layer 
is true with a good accuracy. The arbitrary boundary 
layer, hence, can be considered the locally weakly 
anisotropic. This means that the introduction of 
anisotropic functions φT(ζ) and φV(ζ) for isotropic 
dissipation rates into the similarity theory allows the 
theory expanding to an arbitrary anisotropic 
boundary layer. 

3. Effective isotropic layer 

It was shown in Section 2, that in a large 
interval of the Monin–Obukhov number variation  
(–0.1 t ζ t –1) in a mountain boundary layer the 
isotropic layer mode is realized. The question of 
whether it is possible to substitute some arbitrary 
boundary layer for some effective isotropic boundary 
layer is of interest, because the positive answer 
would give a possibility to use simple semiempirical 
relations, valid in the isotropic layer, for description 
of the anisotropic layer. 

As follows from formulas (8), (9), (8c) and (9c), 
in an arbitrary boundary layer the dissipation rates  
ε and N depend on five parameters: V∗, T∗, T, 
∂u/∂x, and ∂T/∂x. Denote ∂u/∂x = VX(ζ), 
∂T/∂x = TX(ζ) and consider that the form of 
functions VX(ζ) and TX(ζ) is well-known 
(experimental data for ∂u/∂x, ∂T/∂x are presented in 
Figs. 13 and 14). Then relations for ε and N can be 
written as 

 ε = V
3
∗  æ–1z–1[ϕ(ζ) – ζ + ϕV(ζ, V∗, V

X(ζ))],  

 N = αæV∗ T
2
∗

 z–1[ϕ(ζ) + ϕT(ζ, T∗, T
X(ζ))],  (10) 

 ζ = zαæ2gT∗V
–2
∗  T– 1, 

where all arguments in ϕV and ϕÒ are written out in 
the explicit form. Setting the parameter values for 
V∗, T∗ and T in system (10), we find the values of 
the left parts of ε, N and ζ. Inverting the problem, it 
is possible to find V∗, T∗ and T from the known ε, N 
and ζ.  

The system of equations (10) corresponds to an 
anisotropic layer. If to set in Eqs. (10) ϕV 

= 0 and 
ϕÒ 

= 0, then the system (10) will describe an isotropic 
layer. Introducing new parameters V∗ eff, T∗ eff and Teff 

instead of V∗, T∗ and T, we obtain 

 ε = V
3
∗ eff  æ–1z–1

 [ϕ(ζ) – ζ],  

 N = α æ V∗ eff T
2
∗ eff

 z–1φ(ζ),  (11) 

 ζ = zαæ2gT∗eff V
–2
∗ effT

–1
 eff. 

Let us equate left parts of systems (10) and (11) 
to each other, that is equivalent to setting in 
Eqs. (11) magnitudes of ε, N and ζ corresponding to 
actual mountain layer. Solving the system of 
equations (11), we find the values of V∗eff, T∗eff and 
Teff, corresponding to an effective isotropic layer.  

The problem can be simplified via considering 
relative variations of absolute temperature small and 
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supposing the temperature equal to its mean value 
over all observation sessions T = Teff = 273.7 K 
(<T> = +0.5°Ñ, deviating in different sessions by  
1–2°Ñ). Then, having expressed one unknown from 
the third equation of system (11) through another 
and having substituted it into the first two equations, 
we obtain a system of two nonlinear equations with 
two unknowns V∗eff and T∗eff. 

The comparison of turbulent scales of 
temperature and velocity T* and V* for an anisotropic 
boundary layer with effective scales T*eff and V*eff for 
isotropic layer are presented in Figs. 23 and 24. It is 
seen that T*eff and V*eff are close to constants in a 
wide range of the Monin–Obukhov number variation 
(–581 ≤ ζ ≤ 0.3). As is generally known, in an 
isotropic layer these scales should be constant. Based 
on data from Figs. 23 and 24, it is possible to draw a 
conclusion, that the anisotropic boundary layer can 
be substituted for an effective isotropic boundary 
layer. 
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Fig. 23. Comparison of the temperature turbulent scale T* 
for the anisotropic boundary layer with the effective scale 
T*eff for the isotropic layer: T* 
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–0.01 –0.1 –1 –10 –100

0

0.1

1

0.4 0.1 0.01 

ζ

V
*
, V

* 

eff, m/s 

– V
*
  

– V
* 

eff 

–1000
 

Fig. 24. Comparison of the turbulent scale of velocity V* 
(friction velocity) for anisotropic boundary layer with the 
effective scale V*eff for the isotropic layer: V* ∼ 0.27 m/s, 
ζ > ζ* (ζ* = – 0.125); V* ∼ 0.14 (–ζ)–1/3 m/s, ζ < ζ*; 
<V*eff> = 0.049 m/s. 

Effective scales of an isotropic layer averaged 
over all observation points turn to be: <T*eff> =  
= – 0.07 deg, <V*eff> = 0.05 m/s. Such values of 
scales at z = 2.7 m and Teff = 273.7 K correspond to 
the Monin–Obukhov number of an effective isotropic 
layer: <ζeff> = – 0.5. The specified values of three 
parameters completely characterize an effective 
isotropic layer corresponding to actual mountain 
boundary layer. Parameter <ζeff> can serve as the 
indicator of the general meteosituation above the 
mountain region under study during the experiments.  
 Thus, if values of <T*eff>, <V*eff>, and <ζeff> 
characterizing an effective isotropic layer, are found, 
then it is possible to use formulas (11) misregarding 
the anisotropy functions φT(ζ) and φV(ζ).  

4. Outer scale of turbulence  
in anisotropic boundary layer 

As is generally known, the outer scale of 
turbulence L0 can be determined variously. For 
example, V.I. Tatarsky3 determines the vertical outer 
scale based on the equality of mean square of 
difference of random temperature values in two 
points z1 and z2 and its systematic difference.3 This 
condition gives  

 Ñ
2
T| z1 – z2 |2/3 = (dT/dz)2 | z1 – z2 |2;  

 L
T
0 = | z1 – z2 |/(αÑθ)

3/4 = {Ñ
2
T/[αÑθ(dT/dz)2]}3/4,  

  (12) 

where α = Pr–1 ≈ 1.17; Ñθ is the Obukhov constant. 

The outer scale L
D
0  can be determined by deviation of 

structural function of temperature fluctuations from 
the 2/3-dependence. In space of Fourier-

transformations this scale corresponds to L
V
0 

determined from deviations of one-dimensional spatial 
or temporal frequency spectra from the 5/3-
dependence. There are also scales, which are 
parameters in various theoretical models of the power 
interval of a three-dimensional fluctuation spectrum 

(for example, the Karman outer scale L
K
0). 

Practically, it is interesting to find relations between 
these scales, to obtain their theoretical 
representations suitable for anisotropic boundary 
layer, and to compare the results of the theory and 
experiment. 

For the Karman model of a three-dimensional 
turbulence spectrum the structural function D(r) and 
one-dimensional spectral density V(k) are set by the 
expressions3 

 Dν(r) = 2a
2
ν [1 – 21–ν

 Γ–1(ν) (r/r0)
ν

 Kν(r/r0)];  

 Vν(k) = Γ–1(ν + 1/2)Γ–1(ν) π–1/2
 a

2
ν r0(1 + k2r

2
0)

–ν–1/2,  

  (13) 

where r0 is a certain spatial scale (correlation radius); 

a
2
ν is the dispersion; Kν is the McDonald function.  
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In case of temperature fluctuations, for example, 

ν = 1/3, r
–1
0  = k0 = 2π/L

K
0, where L

K
0 is the Karman 

outer scale. 
 Expand Dν(r) and Vν(k) at ν = 1/3 into a 

series in terms of degrees of r/r0, k0/k, and at 
ν = 4/3 (supposing r0 = r1, k0 = k1) – in terms of 
degrees of r/r1, k1/k. Then we obtain 

 D1/3(r) = α0r
2/3 – α1r

2 + Î((r/r0)
8/3),  

 V1/3(k) = β0k
–5/3 – β1k

–11/3 + Î((k0/k)17/3), 

 D4/3(r) = α2r
2 + Î((r/r1)

8/3),  

 V4/3(k) = β2k
–11/3 + Î((k1/k)17/3), 

where α0, α1, β0, and β1 are positive constants 

depending on a
2
1/3 and r0; α2 and β2 depending on 

a
2
4/3 and r1. Quantities a

2
1/3, r0 and a

2
4/3, r1 can be 

related to each other under conditions α0 

= Ñ
2
T, 

α2 = (dT/dz)2, which follow from Eq. (12). They 
allow one to relate the Tatarsky scale to others. 

Determine the outer scale L
V
0 (k* = 2π/L

V
0) from 

the condition of intersecting V1/3(k) and V4/3(k) in 
the point k*, in which relative deviation V1/3(k) from 
β0 

k–5/3 (corresponding to the inertial interval) is 
equal to the set value of δV. Similarly, determine the 

outer scale L
D
0  (L

D
0
 = r* /(αÑθ)

3/4) from the condition 
of intersecting D1/3 (r) and D4/3(r) in the point r*, in 
which relative deviation of D1/3(r) from the inertial 
interval (dependences α0r

2/3) is equal to the value of 
δD. The deviations δV and δD turn to be related, for 
example, at |δV| << 1 we have |δD| ≈ 1.14 |δV|3/4.  

Thus, we have four differently determined outer 

scales: L
T
0, L

K
0 , L

V
0, and L

D
0 . At small deviations δV, 

δD all these scales are linearly dependent (with 
awkward expressions for coefficients). For example, 
at δV = 0.3 (δD ≈ 0.37) the following scale 
representations through the Tatarsky scale can be 
obtained:  

 L
V
0 ≈ 7.3L

T
0, L

D
0 ≈ 0.72L

T
0, L

K
0
 ≈ 12.4L

T
0  (14) 

(or representations through the Karman outer scale: 

L
V
0 ≈ 0.6L

K
0, L

D
0  ≈ 0.06L

K
0, L

T
0
 ≈ 0.08L

K
0). 

As follows from definitions (5), Ñ
2
T = Ñθε

–1/3N. 
Substitute in this formula the expressions (8) and (9) 
for ε and N in anisotropic layer. The vertical 
derivative dT/dz can be expressed from Eq. (7), 

where DT = – 0.49 ∂T/∂x + ∂T/∂z. Substituting Ñ
2
T
 

and ∂T/∂z in Eq. (12), we find the expression for the 
Tatarsky outer scale, generalized to the case of an 
arbitrary anisotropic layer: 

 L
T
0 = æz[ϕ(ζ) + ϕT(ζ)]3/4 [ϕ(ζ) + ϕV(ζ) – ζ]–1/4

 × 

 × |ϕ(ζ) + 0.49zT
–1
∗ ∂T/∂x|–3/2.   (15) 

Setting here ϕT(ζ) = 0, ϕV(ζ) = 0, ∂T/∂x = 0, we 
obtain the well-known expression for isotropic layer 

 L
T
0 = æzϕ(ζ)–3/4 [ϕ(ζ) – ζ]–1/4.  (15à) 

A more simple expression3 L
T
0 = æz/ϕ(ζ) can be 

applied to isotropic layer, which differs 
insignificantly from Eq. (15à) in limiting cases of 
strongly unstable and strongly stable stratifications. 

Let us compare the theory and the experiment. 
For this purpose we make use of different methods 
for obtaining experimental values of vertical outer 
scale.  

As one of such methods, a substitution in 

Eq. (12) of Ñ
2
T
 and ∂T/∂z measured values 

(conditionally term this method “by Tatarsky 
definition”) can be used. As is seen in Fig. 19, 
experimental values of ∂T/∂z are found from 
measurements in the low 5-meter layer (the 5th 

observation session, only 6 points for ∂T/∂z), which 
are comparatively few in number. Therefore, to make 
the comparison more full we use other independent 
methods allowing restoring the experimental values 
of the outer scale. These methods can be based on 
measurement results for temporal frequency spectra 
of temperature fluctuations.  

The samples of temperature frequency spectra 
W(f), obtained in our measurements at various 
values of ζ are presented in Fig. 25. It is seen that 
for all spectra the “5/3” inertial intervals of 
frequencies f, in which W(f) ∼ f 

–5/3, and a 
saturation in the low frequency region are 
characteristic. The spectra are well described by the 
Karman model.  

 

0.01 0.1 1
10–5

10–4

10–3

0.01

0.1

1

10

100

f, Hz

W(f), deg2/Hz 

ζ = –581 

ζ = –0.05 

ζ = +0.05 

∼f 

–5/3

 

Fig. 25. The experimental non-normalized spectra of 
temperature fluctuations. The top curve in a low-frequency 
range corresponds to strongly unstable stratification, bottom 
one – to stable stratification. Spectra are not smoothed, 
significant scattering of the points in a high-frequency band 
results from the discrete Fourier transform.  

 
Apply the Karman spectrum model (13) to 

definition of the Karman outer scale L
K
0 by stable 

characteristics of spectra, for example, by the value 
of spectra at a lower boundary of the recorded 
frequency range (denote it as W(0)) and the value of 
the coefficient w* at the degree f –5/3 in the inertial 
interval (W(f) = w*f 

–5/3). Make use of the relation3 
V(k) = vWexp(kv), where v is the modulus of mean 
wind velocity vector. This relation connects the one-
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dimensional spatial spectrum V(k) determined by 
Eq. (13) with the time frequency spectrum Wexp(ω), 
being a standard one-dimensional Fourier transform 
of the correlation function (ω = 2πf). Taking into 
account that W(f) is a transformation by the positive 
frequencies and W(f) = 4πWexp(2πf), find two 

methods of definition of the Karman scale L
K
0 from 

the spectral characteristics: 

 1) L
K
0 = 4.8(W(0)v/Ñ

2
T)

3/5,  

 2) L
K
0 = (v/f ) {[W(0)/W(f)]6/5 – 1}1/2.  (16) 

The second method for frequencies of the inertial 

interval becomes simpler and yields L
K
0  ≈ v[W(0)/w*]

3/5. 
Conditionally, we term the first of these methods 
“from spectra by saturation,” and the second one 
“from spectra by 5/3 dependence.”  

Figure 26 presents a comparison of experimental 
and theoretical results for the Tatarsky outer scale in 
a mountain boundary layer. When using the 
experimental values of the Karman scale obtained 
from spectra by methods (16), a coefficient of 
recalculation of the Karman scale into the Tatarsky 
scale (14) has been applied, which is suitable for any 
boundary layer.  
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Fig. 26. Comparison of experimental and theoretical results 

for the outer scale of turbulence L
T

0 in the mountain 
boundary layer. (1) the experiment (from spectra by 5/3 
dependence), (2) the experiment (from spectra by 
saturation), (3) the experiment (by Tatarsky definition),  
(4) semiempirical theory for anisotropic layer,  
(5) semiempirical theory for isotropic layer. 

 

Comparison of scales L
T
0
 measured by three 

different methods (“by Tatarsky definition”, “from 
spectra by saturation,” and “from spectra by 5/3 
dependence”) shows a satisfactory agreement between 
the experiment and semiempirical theory (15) in an 
anisotropic boundary layer. 

 
 
 

Data of all observation sessions were used 
(including the 5th altitude observation session) in the 
comparison. Therefore, because of the evident linear 
dependence on the height, theoretical scales both of 

isotropic L
T
0 = æz/ϕ(ζ) and anisotropic layers (15) at 

some values of ζ (at z ≠ 2.7 m) jump. As Fig. 26 
shows, for such ζ the experimental data also jump. In 
addition, in the range, where anisotropy is 
insignificant (–0.1 > ζ > –1) theoretical values of 
anisotropic and isotropic outer scales, as expected, 
are close (curves 4 and 5 jump in practically 
coinciding points of ζ). 

In the range of strongly unstable local 
stratification the anisotropic outer scale is less than 
isotropic one. As follows from Eq. (15), this decrease 
is caused by the multiplier [ϕ(ζ) + ϕV(ζ) – ζ]–1/4, in 
which the values of ϕV(ζ) – ζ are high. Both scales 
(anisotropic and isotropic) decrease in the range of 
weakly stable stratifications. A noticeable difference 
between them (anisotropic is larger than isotropic) is 
observed in the interval of dynamic turbulence 
(indifferent stratification). The increase of the 
anisotropic scale is connected with growing ϕT(ζ) in 
this interval. However, the account for the 
longitudinal derivative ∂T/∂x in Eq. (15) bounds the 
growth of the anisotropic outer scale. As is seen from 
Fig. 26, it improves the coincidence between the 
theory and the experiment. 
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