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The problems of statistical modeling of the optical radiation transfer through stochastic 

scattering and absorbing media are considered. It is assumed that the spatial variations of optical 
parameters of these media are random. The weighting algorithm proposed in the paper enables one to 
optimize modeling. In this approach, random trajectories are constructed for a determined medium, 
while random variations of its optical parameters are considered by calculating special weighting 
factors. In a great number of practically important problems in optics of stochastic media, the 
algorithm allows a simple numerical or sometimes analytical integration of the corresponding random 
estimates, which are necessary in calculating average characteristics of the radiation field. The 
algorithm developed allows one to construct numerical models of the electromagnetic radiation in 
randomly inhomogeneous media mostly intended for solving problems of solar radiation transfer 
through the stochastic continuous cloudiness. 

 

Introduction 

As known, the transfer of optical radiation 
through the absorbing and scattering media can be 
described in the approximation of the geometrical 
optics by the following integral equation (Ref. 1) 

 ′ ′ ′= + ψ∫( ) ( , ) ( )d ( ),

X

f k fx x x x x x   (1) 

where f(x) is the collision density; x = (r, ω) and 
x′ = (r′, ω′) are the points of the phase space X = 

= ∈ ⊂ = ∈Ω = + + =
3 2 2 2{ , ( , , ) ( 1)};R R a b c a b cr ω  ψ(x) is 

the source distribution density; ψ =∫ ( )d 1

X

x x . The 

exact form of the kernel ( )′,k x x  in Eq. (1) is 

determined by the problem type and its boundary 
conditions. The task is to estimate linear functionals 
of the form 

 ( ) ( ) ( )ϕ = ϕ = ϕ∫, d ,

X

I f f x x x   (2) 

where ( )ϕ ≥ 0x is the so-called instrumental function 

that determines the form of the sought characteristic 
of the optical field. Calculation of the Iϕ functionals 
by the Monte Carlo method is related to modeling 
the homogeneous Markovian chains, whose states are 
presented by the sequence 0 1, ,..., ,

n
x x x  where the 

initial state is determined by the density r0(x), while 
the transition from the state 

−1ix  to ix  is determined 

by the density of the transition 1( , ).i ir
−

x x  If  

 ( ) ( )= ψ0r x x  and ( ) ( )
− −

=1 1, , ,i i i ir kx x x x  

then, the chain {xn} is the physical chain of collisions 
and the corresponding modeling method is called the 
analog or physical one. In this case,  

 ϕ = ξ,I M  ( )
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0

,

N

n

n

x  

where N is the random number of the chain 
truncation; M is the symbol of mathematical 
expectation. In the case of non-analog modeling, one 
calculates the random weight  
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with the requirements that ( ) ≠0 0r x  at ( )ψ ≠ 0x  and 

( )′ ≠, 0r x x  at ( )′ ≠, 0k x x , and for the functional ϕI  

one calculates the unbiased random estimate 

 ( )
=

ξ = ϕ∑
0

,

N

n n

n

Q x  (4) 

so that Mξ = Iϕ. The general theory of constructing 
the effective weighted estimates of the type (4) can 
be found in Ref. 2. 

Now consider a stochastic problem, where one 
or several kernel-affecting parameters σ = 
(σ1, σ2,…, σs) and the collision density f(x) are 
random functions of space (random fields). The 
problem can be solved by calculating the random 
quantities ξ(ω, σ) set along the paths ω of the 
random process modeled such that 

 ( ) ( )ϕξ ω σ σ = σ[ , ] .M I   

The paths ω depend on σ. The sought functional 
is determined as  
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 ( )ϕ= σI I ,  

where 〈〉  denote statistical averaging over the 

distribution of the random field σ. One of the most 
important stochastic problems of atmospheric optics 
is simulation of solar radiation transfer through a 
cloudy atmosphere. This problem is important for 
two reasons. First, clouds that always cover the 
major part of the Earth’s surface are one of the main 
factors determining the radiative transfer in the 
“atmosphere – underlying surface” system and the 
inflow of solar energy to the Earth’s surface. Second, 
any cloudiness has a stochastic structure, which can 
tolerably be described only by statistical modeling. 
This paper addresses some questions of applying 
statistical modeling to solution of this stochastic 
problem. 

Statement of the problem 

Consider the process of particle (photon) 
transfer in the phase space X = R × Ω, x(r, ω) ∈ X 
of the coordinates r ∈ R = (–∞, ∞) × [h, H] and 
directions ( )μ ϕ ∈ Ω = − × π, [ 1,1] [0,2 ].ω  The unit vector 

ω  (|ω| = 1) along the particle travel direction is 
determined by the characteristics μ = θcos  and ϕ. 

Here, θ is the angle between the vector ω and the axis 
OZ, ϕ  is the azimuth angle, i.e., the angle between 
the axis OX and the vector ω⊥ (projection of ω onto 
the plane z = 0); and Ω–  and Ω+ are the spaces of 
the unit vectors ω, for which μ ∈ [–1, 0] and 
μ ∈ [0, 1], respectively.  

The effect of the scattering and absorbing 
medium on the transfer of photons is determined by 
macroscopic cross sections of scattering Σs(r), 
absorption Σa(r), and by the scattering phase function 
( , ),g µr �  where ( , )′μ =� ω ω  is the cosine of the angle 

between the directions ω′  and ω  of the particle 
trajectory prior to and after the scattering event, 
respectively. The function ( , )g µr �  has the following 

property: 

 ( )

+

−

µ µ =∫ � �

1

1

, d 1.g r  

Hereinafter, we shall use the following 
characteristics: 

 Σ(r) = Σa(r) + Σs(r), 

which is the macroscopic cross section of extinction; 
the single scattering albedo (the probability of a 
particle to survival after a collision),  

 = Σ Σ
s

( ) ( ) ( )q r r r , 

and the optical path length between the points r′ and r, 
 

 ( ) ( )′ ′τ = Σ +∫
0

, d

l

s sr r r ω , 

where 
 l ′= −r r , ( ) .′ ′= − −r r r rω  

In our case, the source of particles is a 
unidirectional infinitely wide flux of photons 
incident on the upper boundary of the scattering 
layer at z = H. Such a source is described by the 
function 0 0( , ) ( ) ( ),S S z H= π δ − δ −r ω ω ω  where π 0S is 

the solar constant at the chosen wavelength; ω0 is the 
unit vector along the direction of solar radiation 
incidence onto the layer boundary. 

Under such conditions, we have in Eq. (1) that 
 

 0 0( ) ( , ) ( ) ( ),S z Hψ = ψ = π δ − δ −x r ω ω ω  

 and the kernel of Eq. (1) takes the form (Ref. 1): 
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 (5) 

As we proceed to stochastic problem, we assume 
that one or several (in any combination) of the initial 
optical parameters in Eq. (5), namely, q(r), Σ(r), and 

µ�( , )g r  are random functions of space. In the previous 

section, these functions are designated in general 
as σ. 

Thus, hereinafter, we limit our consideration to 
statistical modeling of the radiation transfer through 
an isolated stochastic cloudiness ignoring scattering 
and absorption in the atmosphere below and above 
the clouds. Note that the radiation model of isolated 
cloudiness can easily be incorporated into the 
radiation model of the aerosol atmosphere, which is 
based on the already used in practice computer-based 
automated system for statistical modeling of the 
problems in atmospheric optics (Ref. 3).  

Weighting algorithm of stochastic 
modeling  

The standard approach to solution of the above 
stochastic problem is based on the method of double 
randomization (see, for example, Ref. 1), which 
follows from the relation  

 〈Iϕ(σ)〉 = 〈Mω[ξ(ω,σ)|σ]〉 = M(ωσ)ξ(ω,σ), 

where ω stands for the random path of the Markovian 
chain. In this case, the algorithm for calculating I 
involves: 

1. Simulation of realization of the random field σ; 
 2. For each realization of σ, simulation of 

( )≥ 1n n  conditionally independent paths of the 

Markovian chain ω; 
3. Calculation of the corresponding random 

estimates ξ ω σ( , ).  
With such an approach, there arise principle 

computational difficulties resulting in a significantly  
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longer time of computations as compared with that in 
the case of a deterministic problem. The main 
difficulty is simulation of the photon paths in a 
randomly inhomogeneous 3D medium. In other 
words, every time in modeling the successive collision 
point, one has to solve a laborious problem of 
numerical analysis, namely, solution of the equation 
with respect to the parameter l  

 ( )′Σ + = − α∫
0

d ln ,

l

s sr ω  (6) 

where α is the random number uniformly distributed 
over the interval (0, 1). To solve this equation, we 
usually use a discrete approximation of the random 
function Σ(r′ + ωσ), s ≥ 0. In the general case, this 
approach can result in uncontrolled errors in solution 
of Eq. (6). Reduction of the approximation step hs of 
the function Σ(r′ + ωσ) along the direction ω aimed 
at improving the approximation accuracy inevitably 
leads to the growth of the number of arithmetic 
operations needed to evaluate the root of Eq. (6) at 
the rate proportional to 1/hs. All this makes the 
above approach to simulation of the photon paths in 
randomly inhomogeneous media difficult to use for 
the entire series of practically important stochastic 
problems. For instance, this is true in the case of 
using spectral models of a random field Σ, in which 
the function Σ(r′ + ωσ) is a continuous random 
process along the arbitrary direction ω. 

The weighting algorithm considered below 
allows us to eliminate the laborious solution of 
Eq. (6), which we would need to perform for each of 
the collision events, and to reduce modeling to the 
case analogous to the deterministic problem. The idea 
of this algorithm consists in the following. The 
estimates of the type (4) of the unknown functional I 
can be found from the same random photon paths for 
different realizations of the random field Σ(r) with 
the account of random weights (3) that remove the 
arising bias. Namely, the paths built for a certain 
determined function Σ0(r) can be used for averaging of 
the functional Iϕ(Σ) over the realizations of Σ(r), if 
after each transition x′ → x, the corresponding 
photon weight will be multiplied by the quantity 

0( , ; )/ ( , ; ).k k′ ′Σ Σx x x x  
Assume that 

 0 1{( , ,..., ); ( , ); 0, }n n i i i i nω = = =x x x x r ω   

is a random n-segment path built for the transition 
density 0( , ) ( , ; ).r k′ ′= Σx x x x  Now, the weighting 

coefficient Qn(Σ) that corresponds to the realization 
of Σ(r) is calculated by the formula 
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where 
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−

−

− − −
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1

0 1 0 1 1

0

( , ) d ;

i i

i i i is s

r r

r r r ω  

and (8) 

 ( ) ( )

−

−

− − −
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1

1 1 1

0

, d .

i i

i i i is s

r r

r r r ω  

From Eqs. (7) and (8) it follows that to 
calculate ξ(Σ) along the path ωn built for the density 
k(x′, x; Σ0), we need to obtain realizations of the 
random function Σ(r) only at the points r1, …, rn, i.e., 
Σ(r1), …, Σ(rn), and determine the values of 
integrals (8) of the functions ( )i isΣ +r ω , i = 1, …, n, 

along 1 1( )i i i i i− −

= − −r r r rω  in the segments 1( , ).i i−

r r  

 Thus, the problem of averaging the estimate of 
ξ(Σ) over realizations of the continuous random field 
Σ is reduced to the averaging over realizations of the 
random vectors 

1,
{ ( )}i i n=

Σ r  and 1 1,
{ ( , ; )}i i i n−

=

τ Σr r . In 

many cases it considerably reduces computation time. 
The computation time gain depends on the model of 
the random field Σ(r). 

As an example, consider a popular stochastic 
model of continuous stratified cloud layer ≤ ≤h z H  
in the form of a vertically homogeneous stationary 
random process Σ(z). As an approximate process Σ(z), 
we can use one of the numerous spectral models (see, 
e.g., Ref. 4)  

( )

1

( ) ( ) ( ) 2ln cos( 2 ),
k

k
j j j j

j

z z z a zΣ

=

Σ ≈ Σ = Σ + σ − α λ + πβ∑
 

where αj and βj are the independent random 
quantities uniformly distributed over the interval 

(0, 1); 2
1 ;ja k=  Σσ

2  is variance of the marginal 

Σ distribution; λj ∈ [0, ∞) are distributed with the 
probability density  

 

∞

Σλ = λ
π ∫

0

2
( ) cos( ) ( )d ,S z K z z  

KΣ(z) is the correlation function. In this case, the 
quantity 1 1,

( , )i i i n−
=

τ r r  in Eq. (8) is calculated by the 

formula  

1 1

1

1

1

1
( , )
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2ln sin( 2 ) sin( 2 ) .

i i i i
i

k
j

j j i j j i j
jj

z z

a

z z

− −

−

Σ −

=

⎡τ = Σ − +⎣

⎤
⎥⎡ ⎤+ σ − α λ + πβ − λ + πβ⎣ ⎦λ ⎥
⎦

∑

r r
kω

 

Here, k = (0, 0, 1). 
As the marginal distribution of Σ,  a truncated 

normal distribution is often used with the 

mathematical expectation Σ  and variance Σσ
2 , i.e., 

( ) ( ) 0ϕ Σ = Φ Σ = at Σ < Σmin and 
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where ϕu(x) and Φu(x) are, respectively, the density 
and the distribution function of the normal 
distribution with the parameters ,

u
Σ  

,
,

uΣσ  and τa =  

min ,[( ) ].
u u uΣ= Φ Σ − Σ σ  To find the values Σ

u
 and 

,
,

uΣσ one can use the equations  

 2
1 , min( ),

u uΣα = Σ + σ ϕ Σ   

 2 2 2
2 , min min ,( )( ) .

u u u uΣ Σα = Σ + σ ϕ Σ Σ + Σ + σ   (9) 

Using Eqs. (9), the values of ,Σ  ,Σσ  and 
Pearson’s tables expressing the Σ  and Σσ  values 
through α1 and  α2, it is easy to find Σ

u
 and 

,
.

uΣσ  

Concluding remarks 

This weighting algorithm allows us to eliminate 
the laborious procedure of modeling the random  
 

photon paths in randomly inhomogeneous media and 
thus to reduce the computation time. The suggested 
algorithm is easy to use. The gain in computation 
time depends on the random field model. To 
investigate this dependence, we have conducted a 
series of numerical experiments. 
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