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Based on the analytical expressions derived for errors in determination of both total and 
aerosol extinction coefficients of the atmosphere from laser sensing data, the features common for 
their reconstruction are explained having in mind complex influence of all factors that burden 
solving of the lidar equation. Some recommendations are given concerning the choice of calculation 
algorithms and the use of the a priori information about optical parameters in different atmospheric 
situations (clean, weakly turbid, and optically dense atmosphere) that may help to improve accuracy 
of the extinction coefficient measurements. The results obtained by numerical simulation, which 
confirm analytical conclusions, are presented. The possibility of using the obtained analytical 
expressions for the errors in the extinction coefficients in estimating measurement results in 
particular situations is shown. 

 

Introduction 
The methodological aspects of reconstructing 

optical characteristics of the atmosphere from 
backscattering signals have most completely been 
considered in Ref. 1. The main factors affecting the 
accuracy of determination of both local, the 
extinction coefficient ε(r), and integral, the 
transmission of the sounding path’s part [ri, rj], 
V2(ri, rj), optical characteristics are revealed based 
on the proposed general vector model of different 
schemes for processing lidar signals. Analysis of noise 
immunity of different schemes for processing lidar 
returns is carried out using general model, the effect 
of different noises on the accuracy of interpretation is 
estimated, as well as the requirements to the 
accuracy of measurements are studied. Partial 
analytical formulas, which explain the effect of some 
factors (reference values of the characteristics to be 
determined, variability of the backscattering phase 
function gπ, and accuracy of recording the signals) 
have been obtained in Refs. 2 to 6. 

Obviously, solving of such a problem as 
estimation of the complex effect of all interfering 
factors on the accuracy of interpretation of lidar 
measurements is quite urgent. Besides, no analytical 
expressions have been obtained so far, which would 
enable one to estimate the accuracy limit in 
measuring ε(r) of a medium having a priori known 
the atmospheric situation and specifications of the 
measurement instrumentation that would make it 
possible to propose accuracy-optimal algorithms for 
processing the backscattering signals taking into 
account all the noise factors. The derived analytical 
formulas for the errors in solving the lidar equation 
relative to ε(r) at complex effect of all 
aforementioned factors, as well as in the presence of 
the background and noise in the backscattering signal 
P(r) are presented below. 

 

1. Analytical formulas for the error in 
determining the extinction coefficient 

from data of laser sensing of 
inhomogeneous two-component media 

In the most general case, one can write the lidar 
equation as follows7: 
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where r0 is the minimum distance, at which full 
overlap of the fields of view of the receiver and the 
transmitted pulse is reached; A is the instrumentation 
constant of the system; 
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is the absorption coefficient of the medium, εa(r)  
and εm(r), respectively, are the aerosol and  
molecular extinction coefficients; gπ,a(r) is the aerosol 
backscattering phase function; 
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is the a priori set function; B is the background 
component of the signal. 

General solution of Eq. (1) has the form1: 
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where Ik is the calibration constant that may be 
determined using a priori data on the optical 
parameters of the medium. In using the local, ε(rk), 
and integral  
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reference points, the solutions to Eq. (1) are as 
follows1,2,7: 
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Using expressions (3) and (4), one can easily 
show that the ε(r) profile reconstructed using the 
integral reference point V2(r0, rk) is analogous to the 
profile reconstructed using the local reference point 
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As follows from expressions (3) and (4), to solve 
Eq. (1) one has to know gπ,a(r), εm(r), and reference 
values of the optical characteristics to be determined. 

 By introducing the notation ( , ) ( )d

k

r

k

r

I r r S x x= ∫  

and using the method of finite increments, it is easy 
to obtain, from Eq. (2), a formula for the error in 
reconstruction of ε(r), which has the following form: 
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is the distortion factor determined by the difference 
between the backscattering phase function being 
preset, ,a ( )g rπ , and its true value, gπ,a(r); 

 δ = δ − δε + δε⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦( ) ( ) 1 ( )k k k kI S r r r  

is the relative error in calculation of the calibration 
constant determined by the discrepancy between the 
reference ε(rk) value and the signal measured at the 
reference point rk; 
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is the relative error caused by the presence of the 
measurement errors in the backscattering signal. 

Equation (7) was obtained for the preset local 
reference point ε(rk), however, it is also valid in 
using the integral calibration. In this case, based on 
Eq. (5), the value δε(rk) in the formula for δIk is 
determined by the following relationship 
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There are three components of the error in the 
formula for δI(r), the one due to δS(r), another one 
due to inaccuracy of calibration, and the third being 
the difference between ,a ( )g rπ  and gπ,a(r). Let us 
consider the contribution of each of them separately. 
 

2. The effect of accuracy of setting 
and arrangement of the reference 

points 
To obtain the formula for the error in the 

reconstructed ε(r) profile caused by inaccurate setting 
of the reference value ε(rk), let us assume in Eqs. (6) 
and (7) that ,a ,ag gπ π=  and δ =( ) 0S r . Then the 
relationships following from Eqs. (6) and (7) 
coincide with that obtained earlier.2–4 Therefore let 
us present here only main corollaries of these 
formulas. 

1. The error δε(r) is a function of δε(rk) and the 
optical thickness 
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In moving to the left from rk, the error in 
reconstruction asymptotically tends to zero, while in 
moving to the right from this point, the error 
monotonically increases, tending to infinity at 

 ( , ) 0.5ln{ ( )/[1 ( )]}k k kr r r rετ = − δε + δε   
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that corresponds to the case, when the denominator 
in Eq. (3) becomes equal to zero at some point. If 

,a ,a( ) ( ),g r g rπ π=  then the error in reconstruction 

δε(r) will have the same sign as the error in the 
reference value, more quick convergence of the 
obtained solution to the exact one is observed at 
positive deviations of the reference values, then at 
the negative of the same absolute value. 

2. In principle, the position of the reference 
point is not important at small optical thickness 
τε(rk,r) and relatively small errors in setting the 
reference value δε(rk). This is correct for lidar 
systems operating in a relatively clean atmosphere in 
the visible and infrared ranges, where the 
contribution of the molecular component is 
negligible. 

3. The relative error in reconstruction becomes 
more sensitive to the position of the reference point 
at increasing contribution of the molecular 
component to the backscatter, and its position deep 
into the path becomes preferable. The behavior of the 
error at decreasing of the aerosol backscattering 
phase function will be similar. 

3. Sensitivity of the solution  
to variability of the aerosol 

backscattering phase function 
One can better demonstrate the effect of 

inaccurate setting gπ,a(r) on reconstruction of the ε(r) 
profile if using the formula for the error δε(r) derived 
from Eqs. (6) and (7) assuming exact local 
calibration at ( ) 0:S rδ =  
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One can conclude based on Eq. (9) that if the 
value Q(r) = const within the path segment [rk, r], 
then δε(r) equals to zero there even if 

,a ,a( ) ( ),g r g rπ π≠  because the integral in the 
denominator of Eq. (9) can be represented in the 
form 
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However, in the general case Q(r) ≠ const, that 
can lead to δεa(r) increase along both directions from 
the point rk, at which the boundary condition has 
been set. In using the integral calibration, as follows 
from Eq. (8), the equality δε(rk) = 0 is reached at 
any selected value ,agπ  only if the medium is 

homogeneous on the entire path’s segment [r0, rk]. 
However, it is important to note that these 

corollaries are valid if the reference values, εa(rk) or 
V2(r0,rk), are the exact ones. 

The profiles εa(rk) = ε(r) – 3εm(r)/8πgπ,a 
reconstructed using local and integral calibration are 
shown in Fig. 1. It was assumed, for simplicity, that 
gπ,a(r) = const, ,a ,a;g gπ π=  the profile εm(r) was 
assumed to be known. 
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Fig. 1. The profile εa(r) reconstructed using the local (a) 
and integral (b) calibration (gπ,a = 0.03 sr–1): (1) model 
profile εa(r); (2, 3) reconstructed profiles εa(r) at 
εm = 0.145 km–1 and ,a 0.05gπ =  and 0.01 sr–1, respectively; 

(4) reconstructed profile εa(r) at εm= 0.0116 km–1 and 
,a 0.01gπ =  sr–1. 

 
As Figure 1a shows, δεa(r) = 0 independent of 

the value ,agπ  in a homogeneous medium along the 
path’s segment from 2 to 3 km, where the exact 
reference value εa(rk) is set. In the case of integral 
calibration (Fig. 1b) the error in this part of the 
sounding path is not equal to zero because of 
variability of εa(r) on the lower path’s part 0–2 km 
that confirms all the above-said. 

The profile reconstructed for the distance 
interval from 1 to 2 km converges to the exact value 
εa in a homogeneous medium if moving to the left 
from the reference point, the solution changes more 
quickly in this part, if values ,agπ  are underestimated 
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because of the higher rate of V2(rk, r) variation, 
which depends on ,a.gπ  

The reconstructed profile for inhomogeneous 
parts (Fig. 1) deviates from the exact values εa(r) 
even when approaching to the beginning of the path. 
In the case of Q(r) ≠ const, i.e., although one of the 
components of Q(r) has changed, divergence of the 
solution can exist at any position of the reference 
point. Hence, inhomogeneity of a two-component 
medium is the dominating factor in the errors of 
reconstruction of the εa(r) profile because of 
inaccurate setting of the scattering phase function. 
 It is also seen from Fig. 1 that, at decreasing the 
contribution of the molecular component by 
increasing the wavelength of sounding radiation, the 
reconstructed profile εa(r) becomes less sensitive to 
setting the scattering phase function. 

To explain the difference between εa(r) values 
reconstructed using overestimated and underestimated 

,agπ  values, we obtained (based on Eq. (7)) the 

formula for the rate of the Q(r) change as a function 
of εa(r): 
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r g gQ r
r r r g

π π π

π π

β −
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where ,m ,m m( ) ( )r g rπ πβ = ε  is the molecular 
backscattering coefficient. 

As seen from Eq. (10), at the change of εa(r) by 

the value dεa, the corresponding change in d ( )Q r  is 

significantly greater if ,a ,a,g gπ π<  that explains the 

larger distortion of the reconstructed profile εa(r). 
It is also seen from Eq. (10) that the smaller is 

,a,gπ  the larger is the rate of Q(r) change. The 

maximum of the Q(r) variation rate is reached, as 
follows from Eq. (10), under the condition that 

,m ,a a( ) ( ).r g rπ πβ = ε  Thus, the reconstructed profile in 
a clean or weakly turbid medium, where this 
condition holds most likely, is more sensitive to the 
errors in setting gπ,a and hence the choice of its value 
becomes more critical. 

Numerical simulation (Fig. 2a) was performed 
in order to estimate the effect of variability of gπ,a(r) 
on the efficiency of reconstruction of εa(r) by 
iterative method using the functional relation 
between gπ,a(r) and εa(r) proposed8 for conditions of 
a clean or weakly turbid atmosphere: 

 [ ] a0.23 0.03
,a a0.02 0.000415g − + ε
π = ε + .  (11) 

As the value εa(rk) was set precisely, the error in 
reconstruction of εa(r) was determined only by the 
error in setting the profile ,a ( ).g rπ   

As is seen from Fig. 2a, the use of 
gπ,a(r) = const for this medium leads to essential 
errors along the entire sounding path (the path-mean 
error is 38%), appearance of negative values εà(r) is 
observed in the path segment to the right from the 

reference point. At the same time, the use of iteration 
algorithm leads to exact reconstruction of the model 
parameters if the functional relation between εa(r) 
and gπ,a(r) is known. 
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Fig. 2. Examples of reconstruction of the aerosol extinction 
coefficient profile in an inhomogeneous two-component 
medium: (à) curves 1 and 2 are model profiles of εa(r) and 
εm(r), respectively; curve 3 is εa(r) profile reconstructed 
using constant value of the scattering phase function equal 
to its path-average value; curve 4 is εa(r) profiles, obtained 
applying the iteration algorithm at reliably known 
functional relation (11) and at superposing deviations on 
this dependence, respectively; (b) curve 1 is profile of 
gπ,a(r), satisfying the relationship (11); curve 2 is disturbed 
profile of gπ,a(r). 

 
To estimate the sensitivity of the iteration 

algorithm to the accuracy of the functional relation 
between εa(r) and gπ,a(r) used, deviations of no more 
than 40% were superposed on the profile gπ,a(r) 
satisfying Eq. (11). As is seen in Fig. 2a, the quality 
of reconstruction of εa(r) by iterative method 
(curve 4) even in this case remains quite satisfactory 
(the path-mean error is 7%). 
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4. Sensitivity of the solution  
to the error in measuring  
the backscattering signal 

In reconstructing the profile ε(r) of the 
atmosphere, the presence of noise in P(r) most 
strongly affects the calibration constant Ik 
calculated, especially if local reference point has been 
placed at the end of the sounding path, where the 
signal is comparable with noise.9–11 In this case, even 
at a precise setting of ε(rk), Ik can be calculated with 
large error equal to δI(rk) = δS(rk). Assuming the 
white noise, δI(rk, r) ≈ 0 due to averaging, so, as 
follows from Eq. (7) 

 2( ) ( , ) ( ).k kI r V r r S rδ = δ  (12) 

It is easy to derive, from Eqs. (6) and (12), a 
formula for calculating ε(r) taking into account noise 
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As is seen from Eq. (13), the largest errors in 
reconstruction appear when the reference point is at a 
far distance from the lidar. In recalculating to the 
left from the reference point rk, the error in 
calibration will less affect the accuracy of 
reconstruction of the profile ε(r) due to decreasing 
V2(r,rk). At setting the local reference point in the 
beginning of the path, the calibration constant is 
calculated quite precisely, due to small value of 
δS(r0), and, as follows from Eq. (13), δε(r) = δS(r). 

It is important to note that if the value of the 
integral transmission of the sounding path 
V2(r0, rmax) is used as the reference value, the 
accuracy of calculation of the profile ε(r) improves, 
because in this case, as is seen from Eq. (8), 
δε(rmax) ≈ δS(rmax), that, according to Eq. (6), 
corresponds to the precise determination of the 
calibration constant. 

As follows from Eq. (13), the effect of noise in 
the backscattering signal becomes less essential at 
increasing the optical thickness of the path’s segment 
[r, rk]. Hence, for optically dense media, neither the 
presence of noise in the backscattering signal, nor the 
errors in setting the reference value (as was noted in 
section 1) strongly affect the accuracy of 
reconstruction of the profile ε(r) with the reference 
point at the end of the path. It is also confirmed by 
the results of modeling shown in Fig. 3a (optical 
situation “haze – cloud – haze”). 

The model backscattering phase functions in the 
haze and in the cloud are equal, respectively, to 0.03 
and 0.05 sr–1. In reconstructing the profile εa(r), the 
reference value of the aerosol extinction coefficient was 
set at the point rk = 3 km with the error of 100%, the 
backscattering phase function in the haze and in the 
cloud was assumed constant and equal to 0.05 sr–1. 
Figure 3b shows the dependence of the error in 
reconstruction εa(r) obtained using Eqs. (6) and (7) 

under the same conditions, for which the calculation 
of εa(r) presented in Fig. 3a was made. 
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Fig. 3. Results of reconstruction of the extinction 
coefficient profile in the optically dense atmosphere (the 
reference point was set with the error of 100% at the end of 
the path, the signal-to-noise ratio in the beginning of the 
path is 104: (a) curves 1 and 2 are model and reconstructed 
profiles of εà(r), respectively); (b) the dependence of the 
relative error in reconstruction δεa(r) on the distance to the 
lidar obtained using Eq. (6) and from the results of 
numerical modeling. 

 
The error in reconstructing εa(r) was also 

determined from the results of numerical modeling 
εa(r) shown in Fig. 3a and was presented in Fig. 3b. 
As the presented results coincide with each other, we 
see the only curve in Fig. 3b. Thus, knowing a priori 
the atmospheric situation and characteristics of the 
measurement instrumentation, one can estimate the 
limiting accuracy characteristics of measuring ε(r) 
and εà(r) in the given medium using the analytical 
formulas derived. 
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Conclusions 

In clean and weakly turbid media, in the 
presence of errors in the backscattering signals, it is 
preferable to place the reference point in the 
beginning of the path. The accuracy of reconstruction 
of the profile ε(r) for the points situated farther is 
worse than for the case with the reference point in 
the beginning of the path, even at decreasing δS(r) 
and δI(r) due to averaging over the set of 
realizations. One can also improve the accuracy of 
reconstruction by using the value of the integral 
transmission of the sounding path as the reference 
value. 

However, in weakly turbid media one should be 
careful in choosing ,agπ  value because divergence of 

the solutions and appearance of negative ε(r) values 
are possible at unsuccessful choice even if precisely 
setting the reference point and total absence of 
measurement errors in the backscattering signal. So, 
as it is impossible to set the precise value of the 
parameter ,a,gπ  it is necessary to use known 

functional relations between εa(r) and gπ,a(r) in 
reconstructing the profile εa(r) in the clean 
atmosphere. Neither position of the reference point, 
nor the value of the parameter ,agπ  used as the initial 
approximation affect the accuracy of reconstruction 
of εa(r) (it is determined only by the accuracy of 
setting the reference value and the functional relation 
between gπ,a(r) and εa(r)). 

In optically dense media, like clouds and fogs, 
the reconstructed profile ε(r) is most sensitive to the 
position of the reference point (the solution may 
rapidly converge as well as to diverge), and the most 
optimal is the way of placing the reference point 
deep into the medium. Neither accuracy of it setting 
nor the presence of noise in S(r) practically affect the 
quality of reconstruction of the profile in the 
beginning of the path, because the effect of the error 
in calibration on the obtained profile quickly 

decreases with the increase of the optical thickness 
between r and rk. Besides, as in optically dense media 

a m( ) ( ),r rε ε  the errors related to inaccurate choice 
of the scattering phase function do not affect the 
accuracy of reconstruction at slowly changing or 
quickly oscillating gπ,a(r). In this case 

,a ,a( ) ( )/ ( )Q r g r g rπ π=  does not depend on the 
profiles of aerosol and molecular extinction 
coefficients, and, to improve the accuracy of 
reconstruction, it is necessary to know not the path-
average value of the scattering phase function, but its 
relative behavior, because in this case one can correct 
S(r) to the constancy of the scattering phase function 
along the path.12 
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