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Symmetry of the vibrational-rotational operator of the kinetic energy for pentatomic 
molecules with three and more identical atoms in the internal nonorthogonal coordinates is 
considered. The use of nonorthogonal coordinates can significantly simplify simultaneous description 
of several isotopic modifications of the same molecule. 

 

Introduction 

In recent years, a considerable number of papers 
have appeared on the problem of constructing the 
kinetic energy quantum-mechanical operator for the 
polyatomic molecules in the internal coordinates.1–5 
In the Refs. 2 and 3, the kinetic energy quantum-
mechanical operator has been constructed based on 
classical kinetic energy operator for the n-atomic 
molecules by replacing classical momentums and 
angular momentums by the corresponding quantum-
mechanical operators, in addition, the formulas for 
calculation of the matrix elements are presented. In 
Ref. 4, the quantum-mechanical kinetic energy 
operator has been constructed by changing the 
variables (passing from laboratory coordinates to the 
internal polar coordinates and to the variables that 
describe rotational and translational motions of the 
molecule as a whole). In Ref. 5, the nonorthogonal 
terms of the kinetic energy operator have been 
considered in the general form for an arbitrary 
molecule.  

In this paper, a symmetric form of the kinetic 
energy operator is presented in the internal 
nonorthogonal coordinates for the case of three and 
more atoms. Thus obtained form of the operator can 
make the calculation of matrix elements much easier, 
if the wave functions are presented in a symmetrized 
form. Besides, symmetry properties of the kinetic 
energy operator and angular momentums are 
considered at permutations of atoms. The symmetry 
of the kinetic energy quantum-mechanical operator in 
the internal nonorthogonal coordinates has been 
analyzed in Ref. 6.  

Everywhere below, the internal coordinates are 
set by four vectors, R, d1, d2, and d3, each of which 
is a linear combination of radius vectors of a 
pentatomic  molecule in a certain coordinate system.4 
Permutation of three vectors, d1, d2, and d3, is 

reduced to permutation of equivalent atoms. As the 
internal coordinates, we use four distances, R, d1, d2, 
and d3, three angles made by R with d1, d2, and d3 
(g1, g2, and g3), and two torsion angles, ϕ2 and ϕ3.  
 

Mass dependent coordinates  

To exclude the translational motion of the n-
atomic molecule from consideration, we shall make 
the 3n replacement of the laboratory coordinates ri by 

3(n – 1) internal coordinates 
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The internal coordinates are called orthogonal, if 

aab ab/ .F ′= δ μ  It is advisable for the symmetric 

molecules that permutation of the 

a
r�  coordinates 

should correspond to the permutation of the ri. 
coordinates. Such a choice yields the symmetry of the 
Fab coefficients. For the AB4 molecules, all the Fab 
coefficients are identical at a ≠ b. For the ABÑ3 
molecules, it is possible to choose the ;r�  coordinates, 

for which 12 13 14F F F= =  and 23 24 34.F F F= =  In case 

of considering several isotopic modifications of the 
same molecule, the use of orthogonal coordinates 
leads to the necessity of using their own coordinates 
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for each isotopic modification. The use of different 
coordinates makes it impossible to use the same 
potential energy surface for different isotopic 
modifications. 

Alternative approach consists in using of 
nonorthogonal coordinates or the coordinates being 
orthogonal only for one isotopic modification. In this 
case, the form of kinetic energy gets complicated, 

since nondiagonal terms as 
2

a br r

∂

∂ ∂� �

 appear in it, when 

a b≠ . 

Symmetrical form of the kinetic 
energy operator in the internal 

nonorthogonal coordinates  

Below we shall use definitions and designations 
from Refs. 4 and 5. The nonorthogonal addition can 
be presented in the following form4: 
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The angular momentum of the 2nd and the 3rd 
atom is determined in a standard way:  

 sin cot cosˆ ,ix i i i

i i

l ih
⎛ ⎞∂ ∂

= ϕ + θ ϕ⎜ ⎟
∂θ ∂ϕ⎝ ⎠

  

 cos cot sinˆ ,ió i i i
i i

l ih
⎛ ⎞∂ ∂

= − ϕ + θ ϕ⎜ ⎟
∂θ ∂ϕ⎝ ⎠

 

  iz

i

l ih
⎛ ⎞∂

= − ⎜ ⎟
∂ϕ⎝ ⎠

ˆ .   

For a zero atom:  

 0 1 ,= − −l J l l   

and for the atom 1:  
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Obviously, only 0ℑ  and 1ℑ  depend on J. The 

iℜ  includes only derivatives with respect to radial 

coordinates, and jℑ  includes the derivatives with 

respect to angular coordinates and J. Reference 5 
presents the form equivalent to the form (2), in 
which iℜ and iℑ  are replaced by the explicit 

expressions.  

Transformation rules at atomic 
permutation 

Table 1 demonstrates the transformations of 
torsion coordinates, their derivatives at atomic 
permutations (see Refs. 6 and 7), angular momentum 
operators l and operators of the reduced angular 
momentum .jℑ  

 

Table 1. Transformation of torsion coordinates,  
their derivatives and angular momentum operators  

at atomic permutations 
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Invariance of the nonorthogonal 
addition to the kinetic energy  

Using data presented in Table 1, it is possible to 

show the invariance of nonorthogonal addition add
,

n
T  

proposed in Ref. 5. However it is much easier to 
show the invariance of the form (2). Having this in 
mind, we shall find the transformation rules for 0.ℑ  

It follows from the definition 0 1 2 3( )= − + −l J l l l  that 

it transforms at the permutation of (12)I as J or l1. 
Therefore, 0ℑ  transforms at permutation of (12)I, as 

3.ℑ  At the permutation (23)I, 0 1 2 3( )= − − −l J l l l  

transforms as J or l1, and 0ℑ  as 1.ℑ  Table 2 presents 

the transformation of l0 and 0ℑ  at atomic 

permutations. 
 

Table 2. Transformation of l0 and ℑ0 at atomic 
permutations 
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It is easy to show that expression (2) is 
invariant at the permutations (12)I and (23)I. Let us 
consider, for example, the angular part of the 
expression (2). At the (12)I permutation, 

0 1 2 3( )+ +ℑ ℑ ℑ ℑ  and 1 2 3 1 2( )+ +ℑ ℑ ℑ ℑ ℑ  do not 

change, while at the permutation (23)I, we have that 

0 1 2 3( ( ))+ +ℑ ℑ ℑ ℑ  and 1 2 3 2 3( )+ +ℑ ℑ ℑ ℑ ℑ  do not 

change. Therefore, the angular part of the expression (2) 

is invariant. Similarly 0 1 2 3( )+ +ℜ ℑ ℑ ℑ  and 0 0ℜ ℑ  are 

also invariant because only 0zℜ  component differs 

from zero. Having in mind that 1,ℜ
 2,ℜ  and 3ℜ  

transform, correspondingly as 1,ℑ  2ℑ  and 3,ℑ  the 

invariance of 1 2 3 1 2 3( )( )+ + + +ℜ ℜ ℜ ℑ ℑ ℑ  becomes 

quite obvious. 

Conclusion 

The main difficulty in using the nonorthogonal 
coordinates is in a much complicated kinetic part. 
The transformation rules found above can make the 
programming calculations of the matrix elements 
much easier, if the symmetrized wave functions are 
used. For example, using such relations as 

*

0 1 0 2(12)=ℑ ℑ ℑ ℑ  and the fact that matrix elements 

do not change at simultaneous rotation of wave 
functions and of the operator, the calculations of a 
part of the kinetic energy terms can be simplified. 
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