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This article presents analysis of the first order Coriolis resonance between the nondegenerate 

and degenerate normal modes of the symmetric-top molecules leading to the doubling the sublevels of 
degenerate mode with the quantum number values of full and vibrational angular momentum 
projection equal to unity (k = l = ±1) at strong rotational disturbance. The effective Hamiltonian for 
“giant l-type doubling” Hg.d has been constructed based on the theory of coupled schemes for 
grouping the vibration–rotation interactions. Theory of nonlinear series transformation has been 
applied to analysis of the series over J2 obtained in Hg.d. The first diagonal Padé approximant for the 
vibrational dependence of the giant l-type doubling is presented in the form: 
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where α, C2,J, C4,J are the coefficients in the 21 23, ,H H�  and 25H� operators in Hg.d. The diagonal Padé 

approximants of a higher order are presented, in particular the [2/2] one, in terms of the series 
expansion coefficients for the investigated rotational dependence of the giant l-type doubling on J2. 
The relationships have been derived for the parameters in Herman–Wallis factors in terms of 
molecular constants for the case of strong, (νA, νE), Coriolis resonance. Numerical estimates in the 
Herman–Wallis factors for the CH4, OCS, CO2, and HCN molecules are presented. 

 

Introduction 

The harmonic force field in symmetric-top 
molecules is such that there exist paired resonances 
between some degenerate, at the frequency νt, and 
nondegenerate, at the frequency  νs, fundamental 
vibrational modes. Rotational sublevels of these 
modes are highly disturbed by resonance interaction 
called the Coriolis random resonance.1 Resonance 
interaction of this type leads (in molecules of 
trigonal symmetry) to doubling of the mode νt 
sublevels with the quantum numbers of the 
projections of full angular momentum J and 
vibrational angular momentum L equal to unity: 
k = l = ±1. The magnitude of the sublevel splitting 
linearly depends, according to the existing theories,2,3 
on the quantum number of full angular momentum J. 
This effect was many times observed in the IR 
spectra in some symmetrical molecules C3v (XH3, 
YXH3) and was called the “giant l-type doubling.”3 
Theoretical investigations of this effect were limited 
by consideration of the first extinct contribution to 
the Coriolis interaction operator, and no question on 
the sublevel splitting behavior at high rotation 
energies, say high J values, was addressed. 

The aim of this paper is to present a description 
of rotational dependence of the giant l-type doubling 
effect in symmetrical molecules in the form of 

fractional rational functions of the quantum number 
of the full angular momentum. 

The construction is based on the concept of 
coupled schemes for grouping the vibration–rotation 
interactions of the effective Hamiltonian of vibration–
rotation interactions4 for the rotational dependence of 
the Coriolis resonance interaction. 

In the dominant approximation, the Coriolis 
resonance interaction operator, in the series 
expansion of the initial vibration–rotation Hamiltonian 
for molecules of C3v symmetry, can be presented in 
the following equivalent forms4–6: 
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Formula (1) uses generally accepted designations of 

the molecular constants: e

x
B   is the equilibrium value 

of rotational constant; ζnt2
  is the Coriolis constant; 

ωn and ωt are the harmonic frequencies of 
nondegenerate and degenerate modes. 

The Hamiltonian of the zero approximation and 
the effective rotational Hamiltonian of the excited 
vibrational state (V) can be presented as sums of 
operators (in the Hmn notation system3): 
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 0 20 02,H H H= +  (2) 

 eff

0 0 .
V R

H H H= +  (3) 

The diagonal energy of Coriolis interaction in 
H20 is determined by the relation  

 21 2 ,H J
α α

〈 〉 = 〈 π 〉  (4) 

where the bracket 〈 〉 denotes the extraction 
superoperator of the diagonal part in H20; π

α
 and J

α
 

are the components of vibrational and full angular 
momentums on the molecular-fixed axis α. 

It is possible to include all the mnH�  operators 

having the magnitude of the order of rotational 

constants in 0

RH ; 

2 4

vib e
∼ χ ω ∼ χ ω  (χ is the Born–

Oppenheimer parameter), i.e., 0

RH  can be presented 

as a sum of the following operators: 

 0 02 21 40 .

RH H H H= + 〈 〉 + 〈 〉�  (5) 

For the symmetric-top molecule, 0

RH  can be 

presented as: 
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where 
1 2

2 ;
t t

z
t z t t l lBζ = ζ κ�  are the constants in the 40H�  

operator and the ˆ–
z

t z tG J l=  operator has been 

introduced, while the operator of the vibration mode 
momentum projection on the symmetry axis is 

written in terms of the  ladder operators ta
στ  (see 

Appendix) in the following way7: 
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In passing from lt operator to a zero operator 

0
z
t tl l→ ⋅
ˆ ˆ ,  that corresponds to realization of 

nondegenerate vibrational state, the operator G  

transforms to the operator 
z z

J G J→
ˆ: .  Owing to the 

obvious conditions for the commutators 

 [ , ] [ , ] [ , ] 0
z zz t z t tJ l J G l G= = =  (8) 

the following commutativity should hold  

 20 20 20 0ˆ[ , ] [ , ] [ , ] .z t tJ H l H G H= = =  (9) 

Therefore, for the case of symmetric-top 
molecules harmonic Hamiltonian H20 and operators of 
the projection of the angular momentum of 

ˆ( , , )
a b ct t tl l l l  mode on the symmetry axis 

ct
l  have 

common spectrum of eigenvalues. In addition to the 
principal quantum number vt, the vibration–rotation 
states of the degenerate mode νt can be determined 

by the k, lt, and G quantum numbers, i.e., the Gt 
quantum number is a good quantum number. At high 

J, i.e., when J >> χ–1, the first term H21 in 0

R
H  

becomes dominating. Reference 8 presents the 
relations of purely vibrational and Coriolis energy at 
high J values. In this paper, the model is proposed 
for description of rotational dependence of the giant 
l-type doubling in both polynomial and 
nonpolynomial forms. 

 

1. Effective Hamiltonian for the giant  
l-type doubling 

Coriolis interaction in symmetric-top molecules 
between the nondegenerate νs and doubly degenerate 
νt modes of the series expansion of the initial 
Hamiltonian in the dominant approximation is 
described by the operator, which in contrast to 
expression (1), is written in terms of the ladder 
operators: 
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In the case of a resonance at the harmonic 
frequency ,s tω ≈ ω  it is possible to analyze H21 from 

Eq. (10) using perturbation theory only for the 
nonresonance part: 
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The S-function of the contact transformation 
method corresponding to the H21 operator (Eq. (11)) 
is determined by the relation  
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Resonance part of the H21(νs, νt) operator, 
according to the definition by Eq. (10), has the 
following form  

 –
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τ
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where 
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In analyzing accidental resonances in molecules, 

one should use the operator ( )
mn

S
∗  instead of the full 

generator of contact transformations Smn.  
The effective Hamiltonian (EH) taking into 

account the accidental Coriolis resonances and 
essential resonance interactions in polyatomic 
molecules and radicals can most simply be 
constructed, within the frameworks of the problem 
under study, in the limiting group (W) proposed by 
Watson.8 The concept of ordering vibration–rotation 
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interactions in quasi-rigid molecules has been 
developed in Ref. 9 and presented in the Table 
below. 

 
Table. Determination of orders of magnitude  

of vibrational and rotational operators and commutators  
in different schemes of grouping  

Parameter W ÀN BOO M 
r 1 1 1 χ

–1+ε 

J χ
–2+ε 

χ
–1 1 1 

[p, q]v –i –i –i –iχ–2+2ε 

[Jα, Jβ]R –iχ–2+ε –iJγ 

χ
–1

 –iJγ –iJγ 
 

The Table uses the following designations and 
abbreviations: q and p are the normal coordinates and 
the related momentums; J

α
 are the components of full 

angular momentum; i is the imaginary unit; ε is the 
parameter of smallness, ε → 0; W denotes the 
abbreviated name for the Watson scheme of ordering 
(grouping) the vibration–rotation perturbations and 
then following this principle: AN is for Amat–
Nielsen; BOO for Born – Oppenheimer–Oka; M for 
Mikhailov schemes.  

We shall briefly discuss two ordering schemes, 
namely W and M, which are called the limiting 
ordering schemes.4,9,11 

The W ordering scheme. According to the 
Table, this scheme takes the following orders of 
magnitude for the operators: 

 2

20 ,
e

H Eχ∼  (15) 

 4 –4
02 , 0.

e e
H E E

ε +ε
χ χ χ ε →∼ ∼  (16) 

The M ordering scheme. In this scheme, the 
following orders of magnitude for the operators are 
taken in accordance with the table: 

 2 –2 2

20 , 0,
e e

H E E
ε + ε

χ χ χ ε →∼ ∼  (17) 

 4 2
02 vib.e

H Eχ χ ω∼ ∼  (18) 

The form of EH in different groupings of the 
vibration–rotation interactions can be related to 
different types of tables.10 In the Amat–Nielsen 
ordering scheme, the EH can be presented by a 
square ordering array  

 eff
, .

m

mn
H H m n

→

= ↓ =  (19) 

In the ordering schemes of W or M types, the 
EH can be presented by the limiting cases of table 
degeneracy into the column or row: 

 

W type, M type,

,

row         column

mn mn
H m n H m n� �  (20) 

The EH describing rotational dependence of the l-
type doubling effects including the “giant l-type 
doubling,” can be introduced into the W group by 
the following series: 

eff
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The EH reduction for the case of paired 
intermode resonance interaction was investigated in 
Ref. 11. It should be noted that the general form of 
EH reduction for the molecules of C3v symmetry in 
the doubly degenerate states has been discussed in 
the review 12. Reference 13 presents the detailed 
relationships for the spectroscopic and molecular 
constants. Reference 8 discusses the rotational 
dependence of the first order Coriolis interaction in 
its nonreduced form and in the approximation of an 
isolated vibrational state while in this paper we 
develop spectroscopic models for the reduced EH 
describing the “giant l-type doubling” in symmetrical 
molecules. 

The EH for the “giant l-type doubling” can be 
presented by the following series 

 11 2,2 1 1–1g.d ( ) ,
n
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H P H P
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= ∑�  (22) 

where 11 1, 1tl kP P
= =

=  is the operator of projection 

onto the state shell with the projection values of the 
pseudovibrational and full angular momentums on 
the axis of symmetry equal to unity. The operator 
sequence (22) for the A–E resonance in molecules of 
axial and trigonal symmetry can be presented by a 
product of a tensor operator for the investigated 
resonance and a scalar operator as a function of full 
angular momentum J and its projection J

z. This 
statement is easily proved based on the symmetry 
properties of vibrational and rotational operators 
presented above: 
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where 2, 2,, ( ) ( )/ ,n nn J KC h h= α
� �  are the coefficients in 

the 2,nH�  operators (resonance). Allowing for the 

action of the projection operator P11 in g.d,H�  we 

obtain the following definition of the effective 

Hamiltonian for rotational dependence of the giant l-

type doubling: 
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(24)

 

It is difficult to apply the methods improving 
the series convergence to the sequence in braces, i.e., 
the so-called nonlinear sequence transformations, 
having in mind by this the assumption that 

2

0[ , ] 0R
J H =  and substitution J2 → J(J + 1). The 

diagonal Padé approximant for f(J2), which can be 
employed in handling the spectra at the lowest stage, 
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modifies the EH for the giant l-type doubling to the 
following form: 
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11 – 1 1g.d 2
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where α, C2J, and C4J  are the coefficients in 

resonance operators 21 23, ,H H�  and 25,H  respectively. 

 There are two limiting cases for Hg.d. In the one 
(C4J << C2J) it appears in a polynomial form; in the 
other (C2J ∼ εC4J) it determines the characteristic 
properties of the analytical function f(J2) (simple 
poles, bifurcation points, etc.). In J units, the 
distance to the first pole C2J – C4J ∼ 0 can be 
estimated by the following formula: 

 2

2 4/ ,J JJ C C〈 〉 ∼  (26) 

 2
2 4critical criticalmodul modul / .J JJ J C C〈 〉∼ ∼  (27) 

The definitions of different ordering schemes of 
vibration–rotation interactions presented in the 
Table, give an opportunity of constructing the 
empirical model in order to describe the considered 
effect in terms of the expansion parameter λ, which is 
the function of the Born–Oppenheimer parameter, 
λ ∼ χa/b (see Ref. 9), and of the full angular 

momentum. Summation of the series like m n

Jλ∑  

that appear in using such an approach can be carried 
out by the methods described in Refs. 14–16. Let us 
show two sequences and corresponding Padé 
approximants as an example. 

Let us write a simplified model of g.d:H�  

 – 2 2 –1 2
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where λ ∼ χ1/2, summation by the Padé method yields 
the same expression for all Padé approximants, 
except for the trivial one: 
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On the other hand, a series for f(J2) with the sum 

1 2 –1 2

3

(–1) ( )n n n

n

J
∞

+

=

λ∑  in braces gives the same effect, 

as the change of J2 sign in formula (28). 
This expression was obtained for the considered 

series over J2 by means of the Padé approximants up 
to the sixth order inclusive. This formula can be used 
for calculation of rotational contributions to the 
giant l-type doubling for the symmetric-top 
molecules.  

Let us consider the energy matrix for this 
problem in the basis of symmetric functions7,8: 
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Classification of vibration–rotation functions 
for the molecules of C3v symmetry in the subspace 

with 1tk l= = ±  yields the following result7: 
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Vibration–rotation functions for the 
nondegenerate mode can be classified in the following 
way: 

 
even odd0

1 2

| 10 0
.

J J
J
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〉  (32) 

The energy matrix of g.dH�  Hamiltonian in a 

symmetrized basis | , , , ,t tv l J K S〉  has the following 

form7,15: 
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1 2 3 1 2 3

11 11

22 22

33 33

0 0 0
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J J

E E b

E a b E

a E E
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where 

1 2 3| | , | , | ,τ 〉 = +〉 τ 〉 τ 〉 = −〉  2g.d– | | ,a H= 〈 τ 〉�  

2g.d| |b H= 〈+ τ 〉� . 

The expression for rotational energy of the 
degenerate mode vt can be presented, according to 
Refs. 3 and 10 as follows: 
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where 
1 2
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2 ;t t

t t

v v z
z t t l lt Bζ = ζ χ�  are the anharmonicity 

constants in the operator 40;H�  Gt = Jz – lt2. The 

two-dimensional determinant chosen from the 
corresponding levels for Jeven and Jodd in the basis 

| ,iτ 〉  can be diagonalized in the following way5: 

11 12

–
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where H21 = H12 are real and  

 11 22

1 1
( ) ,

2 2
E H H

±
= + ± Δ  (36) 

where 
1/2

12[ 4 ]HΔ = δ +  and 11 22– .H Hδ =  Square 

root was taken positive so that the relation –
E E

+

≥  
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always holds. The eigenvectors are given by the 
following relations: 

 
1 1

2 2[( )/2 ] ; [( – )/2 ] .x y= Δ + δ Δ = Δ δ Δ  (37) 

The square root was also chosen positive, so that x 
and y are both positive, and x > y at δ > 0 and x < y 
at δ < 0. Sign symbol σ = + 1, when H12 (H12 = à and 
b) is positive, and σ = –1, when H12 is negative. 

Therefore, the degenerate levels with k = l = ±1 
of the νt mode are split into two components: τ+ and 
τ–. The sublevel τ– interacts with the level k = 0 of 
the νs mode while the τ+ sublevel remains 
unperturbed. For odd J, the τ+ symmetry is A1, the τ– 
symmetry is A2, whereas for even J the contrary is 
valid. The giant l-type doubling of the levels with 
k = l = ±1 is by one, two or three orders of 
magnitude greater than ordinary l-type doubling in 
the H22 operator. Nevertheless, when the resonance is 
not so strong and the doubling coefficients in 
expression (36) become of the same order of 
magnitude as the constant α (see Eq. (14)), the 
width of splitting is proportional to J(J + 1) (see 
Refs. 15 and 17). 

Let us consider the expressions for EH 
describing the rotational dependence for the giant l-
type doubling in molecules of trigonal symmetry, in 
the diagonal [2/2] Padé approximant approach from 
Ref. 14, written in terms of C-coefficients of the 
initial EH (26): 

 
2 2 2 2 6 8 4

2 4 2 6 4 4

2 2 4 2 6 2 6

2 4 2 6 2 6

{ [ – ( ) ] – – }/{ –

[ ] – }.

J J J J J J

J J J J J J

C J C J C J C J C J C J

C J C J C J C J C J C J− + +

 

  (38) 

Relations for the EH parameters presented in 
this section in the Padé form involving molecular 
constants applicable to analysis of some molecular 
system of astrophysical interest: for the analysis of 
the (E – F2)-resonance in the methane, of the (A –
 E)-resonance in ammonia, as well as in other 
symmetrical molecules. 

2. First order Herman–Wallis factors  
in the case of strong Coriolis 
resonance (νA, νE), (νE, νF2

) 

The effective operator of the dipole moment of a 
vibrational transition in the W grouping can be 
presented as the following series11: 

 11 12 13( 1) ... .M V M M MΔ = = + + +� � �  (39) 

The theory of intensity of the vibration–rotation 
transitions that uses the limiting schemes of ordering, 
admits the use of methods improving the rate of 
series convergence. Let us introduce the specific Padé 

approximant10,14 for rotational operators in the  
series (39): 
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This series better describes the behavior of line 
intensities at high rotational quantum numbers.9,10 In 
this paper, we shall restrict ourselves to consideration 
of the Herman–Wallis factors for the accidental (νA, 
νE) Coriolis resonances. The first order Herman-

Wallis factors are determined by the 12M�  operator in 

( 1)M VΔ =� . In the general form, the expression for 

12M�  operator is as follows  
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where – /k kp i q= ∂ ∂  is the nondimensional normal 

momentum; λAβ are the direction cosines. Relations 
for the nonzero parameters in the C3v symmetry 
group are the following: 
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In case of strong accidental Coriolis resonance 

H21(νm, νm′), the parametric tensor in the 12M� -

operator has the following modified form  
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Expressions for the parameters marked with 
asterisk have the following form: 
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In the case with no resonance the first term in 
Eq. (44) has the following form3: 

 
2 2

.

–

m m

mm m

m m

′α β
′ ′

′

ω ω
ς μ

ω ω
 (45) 

Analysis of parameters ,
,

k

α β
Θ  made with the 

allowance for the symmetry properties of molecular 

constants mk
αζ  and 

k

β
µ  in the C3v symmetry group, 

yields the following equations relating the parameters 

in 12M�  marked with asterisk, ( )
k

∗ αβ
Θ , and full 

k

αβ
Θ  

ones  
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1 1

1 1

1 1

( ) , , ( ) , ,

( ) , ,

( ) , ,

,

,

.

y x y x y z y z
t tS S

z y z y
t t

x y x y
t t

∗ ∗

∗

∗

Θ ≠ Θ Θ ≠ Θ

Θ = Θ

Θ = Θ

 (46) 

Let us consider methane molecule as an 
example. The harmonic force field in the methane 
molecules is such that it causes the occurrence of 
resonances at the frequencies of the valence and 
deformation vibrations. In particular, there is a dyad 
of states (ν2, ν4) already in the lower energy range. 
In the upper energy range, there is a dyad of states 
(ν1, ν3). Let us present numerical estimates18 of  
Θ-parameters in the operator M12 for the lower states 
(ν2, ν4). Using Gray–Robiette force field18 and 
electrooptical parameters calculated ab initio in 
Ref. 11, we obtain the following values of Θ -
parameters in M12 operator of the methane molecule: 
 

 

, –4
3

, –4
4

, –3

2

–2.833 10 ,

–3.113 10 ,

3.96 10 .

z x
y

x z
y

z z
b

D

D

D
∗

Θ = ⋅

Θ = ⋅

Θ = ⋅

 (47) 

As follows from the above analysis and 
transformation symmetry properties of normal 
coordinates and angular momentum components6 for 
the tetrahedral molecules the Θ-parameters of the ν4 
band in the region of (ν2, ν4) states do not change, 
while Θ-parameter of the ν2 band changes according 
to Eq. (44). This conclusion is confirmed by the 
numerical calculations presented.  

The mixing coefficients in the line intensity are 
obtained from wave functions presented in this 

section and using the expressions (44) for the ( )∗
Θ -

parameters in 12M�  as well as the corresponding 

matrix elements of the operator of the dipole moment 
of the transitions. 

Ignoring the effect of intermode resonance 
interaction (A–E) considered in the paper for 
symmetrical molecules, the F-factors for parallel and 
perpendicular bands of linear molecules are presented 
in Ref. 4. Let us present here the generalized formula 
from Ref. 4 for the F-factors: 

 ( ) 2
, , [1– ( )( ( ) ( )] ,n

n n
F f J f kσ τ ρ ρ ρτ= σ γ Θ +  (48) 

where 

 

,

( ) (2 1),
2

2
( ) , .

2
e

J J n

n

f J J

B
f k k

ρ

ρτ +ρ

ρ
= + ρ +

τ⎛ ⎞= δ τ + γ =⎜ ⎟ ω⎝ ⎠

 

For the parallel bands n = S and the factor 
( ) ( )

,0,
S

F F
σ ρ

=

� , while for the perpendicular bands n = t 

and ( ) ( )
, , , , .

tF F⊥
σ τ ρ σ τ ρ=  As follows from the above-

mentioned relations, the vibration–rotation transition 

with DN = 1 is characterized by the quantum numbers 

of the initial state ( , )
s

v J  or ( , , )tl

tv J k  and by three 

numbers ( , ),τ

σ ρ  which are defined by known 

expressions: 

σ = +1(–1) is the absorption (emission); 

r = 1, 0, –1 denote the R, Q, and P branches; 

t = +1, 0, –1 denote the r, q, and p subbranches. 

These relations are valid not only for linear 
molecules but also for the molecules with equilibrium 
configuration referring to the point groups of middle 
symmetry. 

Dependence of the F-factor on the quantum 
number J for lines due to transitions in the region of 
the giant l-type doubling is the same as in Eqs. (47) 
and (48) (v = 1), but the Q

n
 coefficients in Eqs. (47) 

and (48) are replaced by the Q-coefficients (44). 
Calculation of Q-parameters for the OCS 

molecule gives the following values4: 

 

1

2

3

1.035,

–1.635,

0.310.

Θ =

Θ =

Θ =

 (49) 

For a comparison, we present below the Qn 
values for HCN, DCN and CO2 molecules 
determined from the measured intensity ratios of the 
lines with the same J in P and R branches19: 

 

1

3

3

2 2

(DCN) 3.10,

(DCN) 0.38,

(HCN) 2.55,

(CO ) 1.50.

Θ =

Θ =

Θ =

Θ =

 (50) 

Conclusion 

In this paper, we have applied, for the first 
time, the concept of coupled schemes for grouping 
the vibration–rotation interactions to analysis of 
accidental resonances in spectra of quasi-rigid 
molecules. The Padé approximant method has been 
used as a basis for studying the rotational dependence 
of the paired resonance interactions in molecules. 
Two Padé approximants have been proposed for 
rotational dependence of the giant l-type doubling in 
symmetrical molecules. The relations have been 
derived that relate the parameters of the Herman–
Wallis factor with the molecular constants for the 
case of Coriolis resonances in the energy spectrum of 
molecules. Numerical estimates for methane confirm 
the fact that parameters in the Herman–Wallis 
factor, estimated ignoring the accidental resonances, 
can yield values that are overestimated by orders of 
magnitude. Numerical estimates for the parameters in 
the F-factor are presented for a number of linear 
triatomic molecules, for which accidental first order 
Coriolis resonance is not essential. 
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Appendix 
 

Vibrational and rotational ladder operators and 
phase factors for matrix elements have the same form 
as in Refs. 3 to 6: 

 

, – ,

– , – ,

– ,

a b

t

t t t t
t

t t t x y

S S S

q q q q i
q

a q i p J J i J

a q i p

τ τ

τ τ

στ

τ

σ

∂
= + τ =

∂

= σ = = τ

= σ

 (A1) 

 

1

2

1

2

1

2

, [2( 1 )] , ,

[2 1 ] ,

, [ ( 1) – ( – )] , – .

t t t t t t t

S S S S

a V l V l V l

a V V V

J J k J J k k J k

στ

σ

τ

= + + σ + στ + σ + τ

= + + σ + σ

= + τ τ

 (A2) 

With the operators introduced by Shaffer and 

Lawk,20 the ta
στ  operators of two-dimensional 

oscillator are related by the following expression4: 

 a++ = – iξ,   a+– = – iη+,   a–+ =  iη,  a–+ =  iξ+.    

Relations (A1) and (A2) are used at formation 
of energy matrix (see Section 1) and in calculating 
the transitions strengths (see Section 2) of this paper 
for investigations of accidental Coriolis resonances in 
symmetrical molecules. 
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