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Numerical phase-screen method is described for computer simulation of atmospheric 
turbulence with predetermined spatial spectrum in the case of transversal wind. The method is based 
on the spatial smoothing of the initial uncorrelated random field using a spatial filter obtained by the 
inverse Fourier transform of the original spectrum. The method allows one to simulate phase screens 
of virtually arbitrary length and is free of some restrictions of the spectral method. Examples of 
Kolmogorov spectrum field simulation are presented. 

 

Adaptive optical systems provide real-time 
enhancement of the quality of object images observed 
though perturbed atmosphere. In developing and 
analyzing such systems, computer-simulation 
techniques are used for modeling the atmospheric 
turbulence. One of the most frequently used 
approaches is the phase-screen method1 which is 
based on the assumption that random influence of the 
turbulent medium layer on light beam manifests itself 
at distances larger than the length of the diffraction 
conversion of phase perturbations of a light field to 
amplitude ones. This allows one to replace a layer of 
a turbulent medium of finite thickness by a set of 
thin two-dimensional phase screens with preset 
spatial distortion spectra T( ), { , },x yk kΦ =κ κ  and to 

consider these screens δ-correlated along the direction 
of beam propagation. Varying screen parameters both 
homogeneous and inhomogeneous (along the 
propagation path) distribution of atmospheric 
turbulence can be simulated.  

As a rule, screens S(x, y) are synthesized using 
the spectral method,1 i.e., the two-dimensional 

spectrum T( )Φ κ  is formed with a preset amplitude 

and random, from point to point, phases ϕ(κ), then 
the obtained random spectrum is inverse Fourier 
transformed:  

 { }1

T( ) ( ) exp[ ( )] .FT i
−

← Φ ϕS r κ κ  (1) 

First applications of the method were based on 
the use of independent static screens, which allowed 
calculating averaged statistical parameters of the 
model under study. However, needs in simulation of 
real optical systems stimulated development of the 
phase-screen methods for screens changing 
sufficiently smoothly (“continuously”) between two 
discrete moments in time.   

One of the early studies,2 devoted to random 
two-dimensional surface formation to study 
fluctuation processes in plasma, describes, in addition 
to the spectral method, the method based on the 
synthesis of an optimal two-dimensional statistical 
predictor, which is an analog of the time approach. 

Both amplitude and phase of the formed spectrum 
were random in the spectral approach.2 In Ref. 1, it 
was theoretically justified that only phases of the 
formed spectrum are to be random, while its 
amplitude is to be kept deterministic. 

The difficulty in synthesizing two-dimensional 
surfaces was noted in Ref. 2 concerned with the 
finiteness of the computational grid, at which the 
inequalities 
 

c
L Nδ Λ δ� � �  (2)  

are to be met. Here δ is the distance between pixels’ 
centers; Λ is the variable called gradient length 
(characteristic size of “small” fluctuations); Lñ is the 
length of correlation of the generated field; N is the 
generated realization’s size along one of the sides. If 
one demands that each of the right-hand quantity in 
Eq. (2) to be at least one order of magnitude greater 
than the left-hand one, then the minimum size N is 
about 103; this has become attainable relatively 
recently. However, even that size of the 
computational grid is often insufficient for adequate 
simulation of the atmospheric turbulence. The point 
is that the ratio between characteristic sizes of 
turbulent fluctuations, i.e., inner (∼ 10–3 m) and 
outer (∼ 101–103 m) scales, is 104–106, which requires 
special actions to reproduce low-frequency harmonics 
of the spatial fluctuation spectrum of the atmospheric 
refractive index. 

Large-scale fluctuations mostly contribute to the 
phase dispersion of a light beam propagated through 
the atmosphere. Therefore, many authors proposed 
different techniques for their reproduction while 
generating phase screens. References 1, 3, and 4 
describe techniques based on superimposing of two 
phase screens; one of them includes high and medium 
spatial frequencies of phase fluctuations and is 
formed by the spectral method, another one 
reproduces low frequencies and is formed by 
superposition of Zernike polynomials or the 
Karhunen–Loeve function. 

An extension of the spectral method to the 
problem of synthesis of the screens S(x, y, t), moving 

at a speed ,V  within the hypothesis of frozen 
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turbulence (Taylor hypothesis) is described in Ref. 1. 
The hypothesis is formulated as  

 ( , ) ( ,0), { , }.t t x y= − =S r S r V r  (3) 

The extension makes use of the well-known 
property of the Fourier transform, i.e., shift of an 
original corresponds to adding a linear component to 
the phase of the Fourier transform: 

 { }1( ) ( ) exp[ ( )]exp[ ] .t FT i i t
−

− ← Φ ϕS r V Vκ κ κ  (4) 

This method is sufficiently simply realizable and 
allows moving the screen along an arbitrary 
direction; however, the cyclic shift of the same 
realization is performed in this case. The period of an 
exact replica is determined by the screen size N and 
the  direction of motion.1 

Another synthesis method for “smoothly” time-
changing screens has been proposed in Ref. 5. The 
method consists in modifying the random phase 
factor exp[ϕ(k)] in each spectrum pixel (i, j) at every 
time step tn according to the following equation: 

 
{

} ( )

! 1

2

2

exp[ ( , , )] exp[ ( , , )]

1 exp[ ( , , )] exp[ ],

n n

n

i j t p i j t

p i j t i t

+
ϕ → ϕ +

+ − ϕ ΔVκ
 

(5)
 

where 0 ≤ p ≤ 1, Δt = tn+1 – tn, and new random 
phase addition ϕ2(i, j), like the main phase ϕ1(i, j), 
is uniformly distributed over the [0, 2π] interval. 
Such an approach in combination with the cyclic 
shift allows the additional time transformation of the 
turbulent inhomogeneities distribution due to small-
scale (less or close to a beam size) fluctuations of 
wind speed to be accounted for along with the 
transport of the turbulent inhomogeneities by mean 
wind. The coefficient p = exp(–Δt/τ) allows one to 
regulate the relative contribution of random wind 
fluctuations to the time transformation of 
inhomogeneities in comparison with their mean 
transport. In particular, p = 1 agrees with the Taylor 
hypothesis (i.e., the contribution of random wind 
fluctuations is neglected), while p = 0 corresponds to 
the situation when mean wind is absent or  has same 
direction as the beam propagation. In the latter case, 
inhomogeneities vary only due to random wind speed 
fluctuations with the characteristic time τ. 

This paper describes the method of generating 
the phase screens based on moving spatial filtering. 
Screens synthesized by the method have much longer 
cyclicity, which is determined only by the capacity of 
a used randomizer. This allows much more reliable 
analysis of statistical parameters of the adaptive 
systems to be performed. 

Description of the method 

Consider the spectral method of random screen 
synthesis as a typical digital filtering problem. Let 
the “noise” screen a = {aij} has the sizes N × N, where 
aij is the uncorrelated Gaussian “white noise” of unit 
intensity. The spectrum A = {Aij} of such noise6 is an 
ensemble of random complex variables with unity 

amplitude and phases uniformly distributed over the 
[0, 2π] interval. Superimpose the filter Φ = {Φij} with 
the preset amplitude dependence |Φ(i, j)| and zero 
phase Arg(Φij) on this noise (in the general case the 
spectrum phase should meet the antisymmetry 
condition7; in the spectral method, phase is 
considered equal to zero1): multiply the noise 
spectrum by the filter spectral function and perform 
the inverse Fourier transform. As a result, one 
obtains the complex random field S = {Sij}: 

 1[ ]FT
−

= ⋅S A Φ .  (6) 

Real, Re(S), and imaginary, Im(S), parts of the 
field S are mutually orthogonal1 random fields with 
the preset spectrum amplitude |Φ(i, j)|. Note, that 
the initial noise screen a as well as the spectral 
filtering function Φ and the resulting field S have the 
same size N × N, where N usually equals to integer 
power of the 2 in using the fast Fourier transform 
algorithm. The initial noise field a does not explicitly 
present in the standard spectral method and according 
to Eq. (1) the random spectrum ⋅A Φ  is formed. 
 Consider the solution of the two-dimensional 
field filtering problem in space. In this case, the 
resulting field is presented by the convolution of the 
initial noise field a and the pulsed response function 
of the filter, { }ijH=H : 

 = ∗S a H , (7) 

where H is calculated by means of the Fourier 
transform of the spectral filter function Φ: 

 1Re( [ ]).FT−

=H Φ   (8) 

In the case of infinite-sized fields, Eqs. (6) and 
(7) are completely equivalent and reflect one of the 
feature of the Fourier transform, namely, the product 
of spectra corresponds to the convolution of originals. 
In the case of finite-sized fields, which is of practical 
interest, there is an essential distinction that if the 
size of the pulsed response function H is N × N, then 
the “initial” noise field must have (N + M – 1) × 

× (N + K – 1) size to obtain the resulting field S of 
M × K size. In particular, if K = M = N then the size 
of the initial noise field should be (2N – 1)2, i.e., 
virtually 4 times (by number of pixels – field 
elements) larger then the size of S. At the same time, 
memory required for calculating the convolution (7) 
is only twice as larger as those for calculations by 
Eq. (6), since the variables A and Φ in spectral 
representation are complex, while the variables in 
Eq. (7) are real. Emphasize, that in contrast to the 
spectral method the size of pulsed response function 
is not related to the size of the screen generated. 

At time varying of the initial noise field a, the 
resulting field S also varies (Eq. (7)). In the 
particular case of time variation – moving along 
some direction 

 ( , , ) ( ), { , },x y t t x y= − =a a r V r  (9) 

the resulting field “moves” along the same direction 
corresponding to the speed V. 
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Moving along the direction of one of the 
coordinates is the most easily realizable. Consider, 
step by step, the algorithm of forming the random 
rectangular field M × K, moving along the x-axis, by 
the filter H of N × N  size. 

1. Calculate the spectral filter function 
Φ = {Φij} of N × N size with the preset amplitude 
dependence |Φ(i, j)| and zero phase Arg(Φij) ≡ 0. 

2. Calculate the pulsed response function 
H = Re(FT–1[Φ]) using the Fourier transform. If  
the procedure has been fulfilled correctly, then 
Im(FT–1[Φ]) ≈ 0. The size of the obtained function is 
N × N. 

3. Generate the field a = {aij} of Gaussian 
random variables with the zero average and unit 
variance, which consists of (M + N – 1) line and N 
columns. 

4. Calculate the convolution of the field a and 
function H. As a result, one obtains the column b of 
M elements: 

 ( 1),

1 1

.
N N

i k ji k j

j k

b a H
+ −

= =

=∑∑  (10) 

Place the column b as the first column of the 
resulting field S: 

 1i iS b←  (11) 

and move all rows of S one element to the right.  
5. Move every row of the initial array a one 

element to the right and put new random numbers ai1 
at the first place in every row. 

6. Repeat steps 4 and 5 K times; the resulting 
field S is completely full of smoothed values 

, 1... , 1... .ijS i M j K= =  

7. At every repetition of the steps 4 and 5 the 
resulting array S moves by one element and is filled 
up from the left with the column of new values. 

Maximum cyclicity length of the generated 
random field is determined by the capacity of the 
randomizer used. Thus, in using a 32-bit randomizer, 
the maximum length of the random sequence 
Nmax = 232; to obtain a “band” of the width N, width 
of the initial noise field is to be equal (2N – 1) for 
the same size of the pulsed filter response function; 
maximum length Q of the smoothed field 
correspondingly equals to (Nmax – 2N2

 + 3N – 1)/ 
(2N – 1), whence an assessment 

 max

2

N
Q N

N
≈ −  (12) 

is obtained for Nmax, N2 >> N >> 1. According to 
Eq. (12) Q equals approximately 222

 ≈ 4 

.
 106 at N = 210.  

Generating phase screens with 
Kolmogorov turbulence spectrum  

The method of sliding smoothing was developed 
for synthesis of random phase screens to be used for 

simulating operation of adaptive optical phase 
conjugation systems under the anisoplanatic 
conditions.8,9 In simulating such a system it was 
necessary to synthesize screens as “test” phase fields, 
use of which allows one to obtain results testable by 
other techniques, e.g. analytical calculations. Such 
calculations are carried out easier if using 
Kolmogorov statistics of the refractive index 
fluctuations in the turbulent atmosphere. The spatial 
spectrum of the Kolmogorov turbulence is defined by 
the equation1 

 2 11/3( ) 0.033 ,
n n

C
−

=k kΦ  (13) 

where the structure constant 2

n
C  characterizes the 

intensity of turbulent fluctuations of the atmospheric 
refractive index. For a plane wave passing through a 
layer of a turbulent medium of thickness L, the two-
dimensional geometrical-optics spectral density 

( )kϕΦ  of phase fluctuations has the following form1 

 

 
2

2

8
( ) ( ),

n
k L kϕ

π
=

λ
Φ Φ  (14) 

where λ  is the radiation wavelength. This equation 
was derived assuming the fluctuations of the 
atmospheric refractive index to be delta-correlated 
along the direction of radiation propagation. The 
peculiarity of Kolmogorov spectrum is the absence of 
typical scales of spatial frequencies: at high spatial 
frequencies, the spectrum continuously falls-off down 
to zero and increases without limit at low ones, 
having non-integrable singularity at zero. It is 
impossible to simulate the Kolmogorov spectrum 
correctly; so, either its modification by introducing 
explicitly the outer scale, “cutting off” the spectral 
density at low frequencies, or use screens with 
a fortiori larger size than the light beam aperture. In 
so doing, the amplitude of zero spatial frequency of a 
discrete spectrum is set equal to zero, as it determines 
only the average value of the synthesized field. 

Figure 1 shows two fragments of the phase 
screens S1 and S2 of 128 × 1024 size with the 
spectrum (14) generated using the method of sliding 
smoothing by applying pulsed response functions H 
of different widths. 

 

 
S1 

à 

 
S2 

b 

Fig. 1. Phase screens of 128 × 1024 pixels size generated 
using pulsed response function H of different widths: S1 
screen was obtained with H of the width equal to 128 (a) 
and screen S2 using H of the width equal to 512 (b).  
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In generating S1 the H function used had width 
equal to 128 (Fig. 2) while the S2 screen was 
generated using the width equal to 512. As is seen 
from the comparison of the fragments, the 4-fold 
increase of the H function’s width allows one to 
generate a screen with significantly larger relative 
weight of the low-frequency spatial harmonics. To 
quantitatively compare the generated screens we used 
their expansion over Zernike polynomials on a round 
aperture10:  

 
,

,
nm nm

n m

= β∑S Z  (15) 

where βnm are the expansion coefficients, n is the 
maximum power of the radial polynomial, m is the 
azimuth part of the Zernike mode. Similar approach 
was used in Refs. 1, 3, and 4 as well. Theoretical 

average values 2

nò
β  for Kolmogorov turbulence 

spectrum were obtained in Ref. 11. 
 

 

Fig. 2. Pulsed response function of 128 × 128 size. 
 
These values determine the contribution of 

corresponding modes to the total variance of phase 
fluctuations on the round aperture and are 
independent of the azimuth index m: 

 

5
3

2

0

, .
nm n

D

r

⎛ ⎞
β = α γ γ = ⎜ ⎟

⎝ ⎠
 (16) 

Here D is the diameter of the round aperture, r0 is 
the correlation radius of the light field propagated 
through the turbulent layer of the atmosphere1,11 
(Fried’s radius). The coefficients αn were used for 
comparison of generated screens. Thirty-five 
polynomials with the radial index n from 1 to 7 were 
used in the calculations. The round aperture was 
shifted along the screen with the step equal to its size 

D and average values 2

nm
β  of the squared 

coefficients of the screen expansion over Zernike 

polynomials were calculated. These values were then 
averaged over the azimuth number m: 

 
1

1 1 2

1

( 1) .

n

n nm

m

n

+

− −

=

<α > = γ + β∑  (17) 

To estimate the average Fried’s radius r0 of the 
generated screens and calculate the normalizing 
parameter γ, the averaged sums of the squared 
coefficients of the screen expansion over polynomials 

of the order higher than one 2

1( )σ  and higher than 

two 2

2( )σ  were used, whose theoretical values were 
calculated according to Ref. 11:  

 

7

2

1

2

7

2

2

3

( 1) 0.122,

( 1) 0.0524.

n

n

n

n

n

n

=

=

σ = + α =

σ = + α =

∑

∑

 (18) 

The coefficients <αn> calculated by Eqs. (16) 
and (17) as well as their theoretical values for the S1 
and S2 screens, shown in Fig. 1, are presented in 
Fig. 3. 

 

 
à 

 
b 

Fig. 3. Normalized coefficients <α n> of screens expansion 
over Zernike polynomials: normalizing to  σ

2

1 sum (�); 
normalizing to  σ

2

2 sum (+); theoretical values (•). 
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For the S1 screen generated with the pulsed 
response function of 128 width, the coefficients 
<α1>  are significantly less while the coefficients <α3>  
to  <α7>  are noticeably larger than the theoretical 
values that reflects insufficient fraction of lower 
harmonics in its spectrum.  For the S2 screen 
generated with the pulsed response function of 512 
width, the coefficients <α2>  to  <α7> are very close to 
their theoretical values and only the coefficient <α1>, 
corresponding to aperture-average wave tilts, is a 
little less then its theoretical values. Similar result, 
i.e. increase of the fraction of low-frequency spatial 
harmonics in the generated phase screen was obtained 
in Refs. 12 and 13 owing to the use of a modified 
spectral method according to which the density of the 
computational grid nodes was iteratively increased in 
the spectral space in the neighborhood of the zero 
harmonic.  

In accordance with the theoretical model, the 
distribution of the probability density of phase 
distortions in the turbulent atmosphere must be 
Gaussian.1 Phase screens are to have the same 
distribution. Therefore, a randomizer with the normal 
distribution and zero mean and unity variance was 
used for filling the initial uncorrelated field a. 
Besides, the fields were generated using random 
numbers with the uniform distribution (with the 
same mean and variance). As the comparison showed, 
use of the initial fields with different statistics results 
in virtually similar distributions of the resulting 
screen. The Table below gives comparative 
characteristics of the distributions obtained for fields 
of 128 × 8192 size; here μ1 is the mean value, σ2 is the 
variance, coefficients of skewness μ3/σ3 and kurtosis 
μ4/σ4 – 3, where μi is the central moment of the ith 
order. The results show that when needed, a more 
simple and fast randomizer with the uniform 
distribution can be used instead of a randomizer with 
the normal distribution. 

 
Statistical characteristics of the screen generated  
for normal and uniform distributions of the initial  

noise field a 

Distribution of a μ1 σ
2 Skewness Kurtosis 

normal –0.11 6.49 0.12 –0.18 
uniform –0.1 6.36 –2 ⋅ 10–4 0.12 

 
Calculating convolution in the method of sliding 

smoothing requires more operations than in the fast 
Fourier transform. Therefore, the method of 
generating moving screens proposed takes longer 
computation time than the spectral one. 
Nevertheless, this disadvantage is made up by the 
possibility of  simulating fields of virtually any size. 
Moreover, in a random field simulated with the  
 

spectral method, a spurious correlation occurs on the 
scales larger than half of the screen’s width due to 
spatial periodicity of the Fourier harmonics summed. 
Therefore only a quarter of the screen obtained have 
to be used for such fields.12 The technique of sliding 
smoothing allows one to increase the usable fraction 
of the screen’s width by means of increasing the size 
of the pulsed response function.  

A modification of the spectral method, described 
in Ref. 14, allows approximate simulation of the 
rectangular phase screens as well as their “stitching” 
to obtain screens of required length and eliminate 
periodicity. In contrast, the sliding smoothing allows 
one to obtain screens of arbitrary large length within 
one regular procedure. Besides, in order to obtain any 
required transformation of the resulting screen it is 
sufficient to perform the transformation of the initial 
uncorrelated field and then apply sliding smoothing 
to it. To obtain such a result within the spectral 
method, the required spectrum transformation can be 
very complicated.  

Generation of moving screens by the method of 
sliding smoothing can be easily supplemented with 
the above-mentioned technique to account for wind 
speed fluctuations,5 that allow a better simulation of 
the light beam propagation through the turbulent 
atmosphere to be performed. 
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