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The results of studying a modified dynamical-stochastic algorithm for ultra short-term 
forecast based on the Kalman filtering and the 2-D regression model, are presented. The modified 
algorithm efficiency (relative to the initial one) as applied to the air temperature and wind is 
estimated based on the radiometric and sodar measurements. 

 

At present, considerable study is given to the 
ultra short-term forecast of parameters of the 
atmospheric boundary layer (ABL) state. The remote 
sensing (lidar, radiometric, and acoustic), providing 
the reception of data with a high time resolution, as 
well as new forecast techniques realized within the 
limits of dynamical-stochastic approach are widely 
integrated into the atmospheric monitoring. One of 
the techniques is based on the Kalman filter 
algorithm and two-dimensional dynamical-stochastic 
model.1 Application of the technique to the ultra 
short-term forecast (from 0.5 to 3 hours ) of wind 
and temperature in ABL based on radiometric and 
sodar measurements has shown quite acceptable 
results, which can be essentially improved in case of 
complex modernization of the initial algorithm. 

For the ultra short-term forecast, the small-
parametric two-dimensional dynamical-stochastic 
model1 is used 

 ,

1

( ) ( ) ( )

h i K

m j mh

m h i j

k d k j k
+

= − =

ξ = ξ − + ε∑∑ , (1) 

where ξh(k) is the measured value of the 
meteorological field ξ at the height h in the moment 
k; dm,j are the unknown parameters of the model (m 
is the number of heights and j is the current value of 
the discrete time); ξm(k – j) are the measured values 
for the same field at heights between h – i and h + i 
(i = 1, 2, … determines the number of the given 
heights); ε(k) is the model residual conditioned by 
the stochasticity of atmospheric processes. 

Depending on the mode of the initial data 
processing, the forecast can follow a single-channel or 
a two-channel scheme. The single-channel forecast 
scheme assumes the direct application of the 
measurements or their smoothed values in the 
model (1). When using the two-channel scheme, the 
resulting forecast estimation of the field ξ is  

composed of the sum of estimates of the regular field 
component ⎯ξ, determined from the measurement 
data for 3–4 hours prior to the forecast, and the 
estimate of the fluctuation component ξ′ obtained 
from the model (1). 

Consider now the problem of the suggested 
dynamical-stochastic algorithm modernization for the 
same data of radiometric (temperature) and sodar 
(wind) measurements as in Ref. 1. The algorithm 
efficiency depends on the mode of the initial data 
processing, the duration of the Kalman filter 
continuous operation, and the length of the initial 
sample used as a predictor. Depending on the 
character of the atmospheric process, the alternative 
construction of the ultra short-term forecast 
algorithm is possible, which allows the use of either 
actual measurements or smoothed data (averaged over 
Δt = 1 h), or deviations from the regular model 
component in the processing of the initial 
information.  

Figure 1 presents the behavior diagrams of root-
mean-square errors in the forecast of the temperature, 
as well as zonal and meridional components of the 
wind velocity at individual altitudes for different 
modes of the initial data processing, depending on τ.  
 First, consider Fig. 1à, constructed for the 
temperature, the time variability of which is rather 
slow. Index 1 denotes the operation mode, when the 
initial measurements are smoothed (the smoothing is 
conducted before the measurements come to the 
Kalman filter). Index 2 corresponds to the processing 
of deviations from the regular component; and index 
3 – to the processing of actual measurements. 
Analysis of Fig. 1à shows that the use of the 
measurements themselves (smoothed and actual) is 
more preferable for the forecast than their deviations. 
At τ = 3 h, for example, the additional smoothing of 
the initial measurements before the processing allows 
a considerable decrease of the forecast error (by 
0.4°Ñ) as compared to variants 2 and 3. 
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Fig. 1. Behavior of root-mean-square errors of the ultra 
short-term forecast for temperature (T), zonal (U) and 
meridional (V) components of the wind velocity depending 
on τ and different modes of the initial data processing. 

Figures 1b and c present similar diagrams 
obtained for zonal (U) and meridional (V) 
components of the wind velocity characterized by the 
typical high time variability. Figure 1b presents the 
mode using actual measurements, and Figure 1c 
presents the mode using deviations from the regular 
component. As is seen, the deviations from the 
regular component are the best as the initial data 
when forecasting wind velocity components at τ = 1–
3 h. In this case, the possible gain in the forecast 
error, for example, at τ = 3 h (independently of the 
height and the wind velocity component), is between 
0.3 and 1.2 m/s. Further, when studying the forecast 
algorithm, the smoothed data are used for the 
temperature and deviations from the regular 
component for orthogonal wind velocity components. 
 As an example, Fig. 2 presents the behavior 
diagrams for ultra short-term forecast errors (τ = 3 h) 
depending on the interval of continuous Kalman 
filter operation ΔtR (Figs. 2 à and b) and on the 
length of the initial sample used in the predictor Δtbg 
(Figs. 2c and d). As Figs. 2à and b show, it is 
necessary to choose the interval 2 h < ΔtR < 6 h of 
continuous Kalman filter operation for various 
atmospheric processes. Although the forecast error for 
temperature decreases depending on ΔtR, the gain is 
quite small as compared to a sharp growth of error in 
the case of the orthogonal components of the wind 
velocity. In its turn, as follows from Figs. 2 c and d, 
the dependence of the temperature forecast error on 
Δtbg is quite essential, moreover, at τ = 3 h, the 
minimal error is observed at Δtbg ≈ τ. At the same 
time, for orthogonal wind velocity components this 
dependence is very week. 

Thus, the complex accounting for all above-
mentioned ways of modernization of the ultra short-
term forecast algorithm allows an essential decrease 
of the forecast error as compared to the initial 
algorithm. This is clearly seen in the table, which 
exemplifies values of the root-mean-square error δ for 
the forecast, conducted for typical heights at τ = 2 
and 3 h. 

 

Updated algorithm  Initial algorithm
Height, m

τ = 2 h τ = 3 h τ = 2 h τ = 3 h

Temperature, °Ñ 
200 0.4 0.5 0.6 0.9 
400 0.4 0.5 0.6 0.9 

Zonal wind velocity, m/s 
100 1.0 1.1 1.6 1.9 
200 1.1 1.3 2.0 2.3 

Meridional wind velocity, m/s 
100 0.8 1.2 1.8 2.1 
200 1.3 1.6 1.9 2.3 
 
For example, at τ = 3 h the level of the root-

mean-square error in the forecast conducted via the 
updated algorithm is 1.4–1.8 times lower than 
conducted via the initial algorithm independently of 
the meteorological parameters and the altitude.  
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Fig. 2. Root-mean-square error behavior in the ultra short-term forecast (τ = 3 h) for the temperature (T), zonal (U) and 
meridional (V) wind velocity components depending on the interval of the continuous Kalman filter operation ΔtR and the 
length of initial consequence (Δtbg) used in the predictor. 

 

 

Therefore, based on the obtained results, we can 
conclude that the improved algorithm can be 
successfully used in the ultra-short-term forecast. 
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