
E.G. Klimova and N.V. Kilanova Vol. 19,  No. 11 /November  2006/ Atmos. Oceanic Opt.  863 
 

0235-6880/06/11  863-04  $02.00  © 2006 Institute of Atmospheric Optics 
 

 
 

Numerical experiments on estimation of methane emission  
based on the data assimilation system for passive impurity  

in the atmosphere of the Northern hemisphere 
 

E.G. Klimova and N.V. Kilanova 
 

Institute of Computational Technologies,  
Siberian Branch of the Russian Academy of Sciences, Novosibirsk 

 
Received April 28, 2006 

 
We propose a technique of data assimilation in solving the problem on estimating the 

concentration and total outcome of a passive impurity. The forecast of changes in the impurity 
concentration fields in time is given using semi-Lagrangian model of a passive impurity transfer and 
diffusion applied to the Northern hemisphere. The algorithm of data assimilation being used in the 
problem on estimating the fields of concentration and total outcome of a passive impurity is based on 
the Kalman theory of optimal filtering. In calculating the covariance matrices assumption is made of 
the ergodicity of the random fields of errors considered. In this paper we present the results of 
numerical experiments with model data on the passive impurity concentration using methane as an 
example. Efficiency of the approaches to the assimilation problem proposed is shown. 

 

Introduction 
 
The problem on assimilation of the results of 

observations is of great demand nowadays in modeling 
various processes in the atmosphere, ocean, water 
bodies, etc. The problem on the joint analysis of the 
observation data and a forecast model is solved either 
by use of the general optimization approach assuming 
variational statement of the problem or by using the 
estimation theory. In the first case, the so-called 

4DVAR assimilation method is being developed, in the 
second one – the assimilation algorithm based on Kalman 
filter. In this paper we present the data assimilation 
technique intended for use in problems on estimating 

of the concentration of a passive impurity. The forecast 
of changes in the impurity concentration fields with 
time is performed using a semi-Lagrangian model of 
the transfer and diffusion of a passive impurity 
considered for the Northern hemisphere. 

The data assimilation algorithm is based on the 

Kalman theory of optimal filtering. Realization of  
the Kalman filter algorithm, in its full form, on a 
computer is impossible since the order of the covariance 

matrices for modern global models achieves 1 million. 
One of the approaches to solving this problem is the 
use of simplified models in calculating matrices of the 
forecast errors covariances. Such an algorithm is called 

the suboptimal algorithm of the Kalman filtering.1,2 

Numerical experiments on assimilation of the data on 
a passive impurity using the above-mentioned 

algorithm have been described in Refs. 3 and 4. The 
second approach to organization of the covariance 
matrix calculations is based on the assumption of 
ergodicity of the random fields of the error considered. 
In this case, the probabilistic averaging can be replaced 
by averaging over time.5 

Assimilation of the observation data  
in the problem on transfer  

and diffusion of a passive impurity 
 

Preliminary estimation of the impurity concentration 
fields is being done using a model of transfer and 

diffusion of a passive impurity. The model used is 

described in detail in Refs. 3 and 6. For solution of 
transfer and diffusion equation, the quasi-monotonic 

semi-Lagrangian scheme is applied. Let us briefly 
state the main idea of this scheme. First, we apply the 

splitting method to physical processes.7 According to 

this method, solutions are being sought, successively at 
each time step, to the problems on: à) impurity transfer 

along trajectories and b) for turbulent diffusion. 
At the first stage, the problem of impurity transfer 

is solved in Lagrangian coordinates. At interpolation 
from the Eulerian to the Lagrangian coordinates, the 
monotonization procedure, described in detail in 

Ref. 8, is used. At the second stage, the problem of 
turbulent diffusion is considered in Eulerian 

coordinates. Diffusion equation is approximated using 
Crank-Nicholson scheme. Then the directional 
splitting method is applied to the difference equation 
obtained, and the factorization method is used in 
solving the set of difference equations.  

The algorithm of data assimilation used in the 
problem of estimating the fields of a conservative 
admixture concentration is based on the Kalman 
theory of optimal filtering. Statement of the optimal 
filtering problem can be found in Refs. 9 and 10 and 
the linear case of a discrete Kalman filter algorithm, 
in application to transfer and diffusion of a 

conservative admixture, is described in Refs. 3, 11, 
and 12. 
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The main difficulty in realization of Kalman 
filter algorithm appears at calculating the covariance 
matrices of forecast errors due to very high order of 
these matrices. One of the ways to overcome this 
computational difficulty is in applying suboptimal 
algorithms of the Kalman filter. These are the 
algorithms, which use simplified models in calculations 
of the covariance matrices of the forecast errors.1,2,4,13 

 

Numerical experiments 
 
We have considered the variant of suboptimal 

algorithm as applied to the problem on estimating 
the field of methane emission. The algorithm is based 
on the assumption of ergodicity of the fields of 
forecast errors. Covariance of the forecast errors have 
been calculated using the equations for these errors. 
A description of such an algorithm and numerical 
experiments on estimation of the field of concentration 
are presented in Ref. 3. 

The “true” concentration field was set in these 
numerical experiments as follows 

 tr tr tr

–1 –1 –1 –1;k k k k kx A x= + η + ε  (1) 

 tr

0 ,η = η  (2) 

where Àk–1 is the model operator, tr

–1kx  is the “true” 

methane concentration, tr

–1kη  is the “true” methane 

emission at time tk–1, εk–1 is the random vector of 
model “noises.” 

The concentration forecast by the model f

kx  

(preliminary estimation of the concentration field) 
was set as: 

 f f f

–1 –1 –1;k k k kx A x= + η  (3) 

 f

0 0,η =  (4) 

where f

–1kη  is the methane emission at time tk–1. The 

data were modeled for the moments of observations 
 

 0 tr
,k k k ky M x= + ξ  (5) 

where Mk is the matrix interpolating the value of tr

kx  

from those at nodes of the grid to the observation 
points, ξk is the random value with normal 

distribution, zero mean, and the variance 2

0.σ  

The following numerical experiments on methane 
emission have been carried out.  

In the first experiment, the initial emission field 
was taken zero, the emission error was set as a 
random value with zero mean and with root-mean-
square error equal 10% of the mean emission value. 
  The emission field reconstruction was carried out 
during the assimilation of data on the concentration. 
The second experiment dealt not with the estimation 
of the emission itself, but with the estimation of the 
correction factor in the emission model. It was assumed 
that time variation of the emission field could be 
presented in the form 

 (1 ),k kη = η + δη�  (6) 

where η�  is the background emission value; δηk is the 

correction factor at the kth moment in time. Thus, 
 

 2

1 1– ,k k k+
δη = αδη + α χ  (7) 

where α = 0.95, χk is the normally distributed random 

value with zero mean and the variance equal to 0.01. 
Such a model was proposed in Ref. 14. 

In the experiment #1 we have an equation system 
for the forecast errors in concentration Δxk and 
emission Δηk: 

 –1 –1 –1 –1;k k k k kx A xΔ = Δ + Δη + ε  (8) 

 –1;k kΔη = Δη  (9) 

 0 0.xΔη = Δ  (10) 

Estimates of the concentration and emission fields 
at the assimilation were calculated by the following 
formulas: 

( ) ( )
–1

a f T f T 0 f( ) – ;k k k k k k k k k k kx x x x M P M R y M x= + Δ Δ +  (11) 

( ) ( )
–1

a f T f T 0 f( ) – .k k k k k k k k k k kx M P M R y M xη = η + Δ Δη +  (12) 

In calculating the covariance matrix, we have used 
the assumption that the probability averaging can be 
replaced by averaging over time5: 

 f T T

1

1
( ) ( ) .

–1

N

i ik k k

i

P x x x x
N

=

= Δ Δ ≅ Δ Δ∑  (13) 

By analogy with formula (13), the crosscovariance 
matrix of concentration and emission errors was 

calculated. Here again the assumption on the 

possibility of replacing the probability averaging by 
averaging over time has been the basis: 

 T T

1

1
( ) ( ) .

–1

N

i ik k

i

x x
N

=

Δ Δη ≅ Δ Δη∑  (14) 

Thus, using the calculated fields of errors in the 
concentration and emission, we have estimated 

covariance of errors in the forecasted fields of methane 
concentration and emission. After that the field of 
concentration was calculated, using observation data, 
by the formula (11) and the emission field by the 
formula (12). 

The initial emission for the second experiment 
was set as follows: 

 tr tr

0 0(1 ),η = η + δη�  (15) 

 f f

0 0(1 ),η = η + δη�  (16) 

and for calculations of the correction factor we took the 

values 
tr

0δη = 0.1, f

0δη = 0.2. Between the assimilation 

moments, the change in correction factors was 
calculated by formula (7), namely: 

 tr tr 2

1 1– ,k k k+
δη = αδη + α χ  (17) 
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 f f 2

1 1– .k k k+
δη = αδη + α χ  (18) 

During the assimilation, the concentration was 

calculated by formula (15) and correction factor aδηk  

by the formula below 

 ( ) ( )
–1

a f T f T 0 f( ) – ,k k k k k k k k k k kx M P M R y M xδη = δη + Δ Δδη +  

  (19) 

where kΔδη  is the difference vector between the 

correction factors for the emission forecast and actual 
emission at the kth step in time: 

 tr f
– .k k kΔδη = δη δη  

Thus, the crosscovariance matrix of concentration 
errors and the emission correction factor is calculated 
in formula (19), by analogy with the Eq. (12). 

In numerical experiments, the calculations were 
performed on the 2.5×2.5° horizontal grid at 15 levels 
along vertical, in Δt = 15 min time intervals. Also we 
used data of objective analysis from the Russian 
Hydrometeorological Center on the wind velocity 
fields, temperature and pressure for August 1–3, 2002 

and model distribution of methane concentration for 
August.15 The calculations were made for two days 
with the assimilation every 12 hours, with the 
observation data being modeled by the formula (5). 
The data on orography were taken from the 

corresponding site.16 The data on emission were taken 
from Ref. 17. 

For estimation of the parameter characterizing 
the interaction of the atmosphere and the underlying 
surface, we have used the parameterization 

computation code presented by V.A. Shlychkov in 
description of the lower boundary condition in the 
model of an impurity transfer and diffusion. 

Figure 1 presents the results of the first numerical 
experiment. 

Figure 1à shows the relative error in 
concentration obtained at the data assimilation by 
use of suboptimal algorithm of the Kalman filter. The 
emission field is estimated, during the assimilation, 
by formula (12). The “true” emission value set constant 
at every step in time, at every grid point at two 
lower levels along vertical. Time steps are presented 
on abscissa. Figure 1b demonstrates the root-mean-
square error in emission. 

Figure 2 presents the results of the second numerical 
experiment. Figure 2à demonstrates the root-mean-
square error in the concentration estimate obtained in 
the experiment. Figure 2b shows the time variation of 
the root-mean-square error in the emission estimate 

obtained in the second experiment. Figure 2c depicts 
time behavior of the root-mean-square error in the 

estimate of the correction factor of the emission model. 
  As follows from Fig. 2b, the general reduction of 
the root-mean-square error in estimate of the emission 
is achieved. Insignificant increase of the estimate 
after two or three assimilations was conditioned by 
oscillations of the correction factor. 
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b 
Fig. 1. Root-mean-square error in the estimate of the methane 
concentration, ppm (à), and emission, ppm (b). Experiment 1. 
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Fig. 2. Root-mean-square error in estimate of the 
concentration, ppm (à), emission, ððm (b), and correction 
factor (c); experiment 2. 
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It should be noted that general level of errors in 
the concentration field is lower in the second 
experiment and the emission value is closer to the 
“true” one in the experiment 2 too. 

 

Conclusion 
 

The numerical experiments discussed enable one 
to conclude that it is possible to estimate, during the 
data assimilation, such model parameters as emission. 
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