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We discuss the reconstruction of the pulse width and correct coordinates of an 
isotropically emitting source from remote observations through homogeneous clouds. The 
approach suggested is based on the use of known solutions of the radiative transfer 
equation, and requires a high-resolution observation system enabling one to resolve the 
images of isolated portions of the beam spot at the cloud tops. 

 
 

Certain remote-sensing problems require that one 
record optical signals from isotropically emitting 
sources through a cloud layer. If the layer is dense and 
strongly attenuates direct radiation, then the signal 
recorded by a receiver is formed by radiation coming 
from different points of the reemitting spot at the 
upper boundary of the layer (plane z = 0 in Fig. 1) 
due to scattering. The intensity distribution of the 
scattered radiation at the upper boundary of the layer 
can be written, in the thin-screen approximation, as: 
 

 
 

 (1) 
 

where h is the distance from the source to the upper 
boundary of the layer; r is the radial coordinate on the 
plane z = 0 with the reference point at the centre of 
the beam spot; 0 is the optical depth of the layer along 
the direction from the source to the spot’s centre;  is 
the probability of photon survival in a sin-
gle-scattering process (for water droplets at visual 
wavelengths, it is close to unity). 
 

 
 

Fig. 1. The experimental arrangement for ob-
serving a nonstationary isotropic source of ra-
diation through a cloud layer. 

 

In traversing a cloud layer, information on pulse 
shape and source coordinates is partially lost. As a 
consequence, the distorting effects of the atmosphere 
must be corrected for. 

In a real situation a receiver has a finite beam 
pattern, and the signals recorded are formed by su-
perposition of large number of signals coming from 
different points of the spot with certain relative de-
lays. This leads to a lengthening of the resulting pulse 
relative to that emitted by the source. Observed from 
large distances (S = AÂ p h), this lengthening can 
be described by a pulse function (t), which is ob-
tained from the distribution (1) with the coordinate 
transformation (isochrone equation) 
 

 (2) 
 

 
 
where  is the viewing angle, and c is the speed of 
light. The function (t) is obtained by integrating 
U(r = (x2 + y2)1/2) over x and ó within the limits 
 

 
 

    
 
determined by Eq. (2). Thus, (t) is defined as 
 

 (3) 
 
where A is a normalizing factor. Keeping terms only to 
first order in sin2, one obtains from (2) and (3) 
 

 (4) 
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where  is the solid angle subtended by the receiver 
aperture at the source, and  is the transmission of the 
layer. The duration q of the response (at some level) is 
related to the dimensions l of the luminous spot at the 
same level by 
 

 (5) 
 

The original signal is lengthened to this value at the 
receiver, the output signal being the convolution of the 
input signal and the impulse response (t) of the system. 

The original pulse shape for known impulse re-
sponse function of the path, may be reconstructed by 
solving certain ill-posed problems associated with 
convolution integrals of the first kind1. 

For a narrow beam pattern, enabling one to re-
solve portions of the observed surface of size cAt, 
where At is the required temporal resolution of the 
system, the above effect vanishes. However, there 
remain delay effects due to multiple scattering of 
radiation propagating though the cloud layer. If the 
system resolves individual points on the spot and 
allows separate measurements to be made of the signals 
coming from them, then one can assess from the ex-
perimental data the signal distortions due to multiple 
scattering, using one or another model of light 
propagation through clouds, and, reconstruct the 
initial shape of the pulse and the source coordinates. 
Below we discuss one such procedure, based on the 
small-angle approximation of radiative transfer theory 
for isotropically scattering media2–4. 

The dispersion D1 (the second moment of the 
energy distribution in time) of a pulse with the plane 
wavefront that has traveled a distance L through a 
cloud, differs from the initial variance D0 by the value 
 

 (6) 
 

where 2 2    is the variance of beam’s deviation 

angle in a single scattering event. This variance is 
determined by the shape of scattering phase function2 
P(); s =  > ; –4 4 .g     For a homogeneous 

path where' the scattering phase function is ap-
proximately by Gaussian3, i.e., 
 

 
 

Ds is given by 
 

 (7) 
 

where 
 

 (8) 
 

d is the mean diameter of cloud droplets;  is the 
wavelength of the radiation; tL = L/c. The dispersion 
Ds is related to the coherence bandwidth k by3 

 

 
 

Assuming the wave front to be locally plane at large 
distances from the source (at least within the limits of a 
resolved element of the cloud layer), one can use these 
equations to determine the height h of the upper cloud 
boundary, the optical depth of the layer in the vertical 
direction 

0 0,s g  and the initial dispersion D0 of the 

pulse from measurements of the shapes of pulses re-
ceived from different points on the luminous spot. If 
the points are all in the same plane XZ, then 
 

 
 

 
 

 (9) 
 

 
 

In equations (9), 6 is the difference between the 
moments when the pulses appear from the central 
point of the spot and from one of the other three points 
selected, located or a distance x1 from the center; D10 

is the measured dispersion of the pulse coming from the 
central point; 1 are the dispersion differences between 
the pulses from the i-th and central points of the spot; 
 

 (10) 
 

From the known h and 0 (angular coordinate of 
the central point) and the distance s between the 
receiver and source, one can determine the angular 
coordinate of the source . For s p h one obtains 
 

 (11) 
 

Using the calculated value Ds0 and measured spectrum 
of the envelope Å10() of a signal leaving the cloud 
layer, one can reconstruct (within a limited bandwidth 
 < (2s)

–3/2(H/c)–1, where H is the geometric 
thickness of the layer2) the spectrum of the input 
signal envelope: 
 

 (12) 
 
One thereby determines at the same time the shape of 
the input pulse. Constant k in Eq. (12) depends on  
and . 

Representation of the scattering phase function 
P() by a Gaussian function is not always a good 
approximation4,5. In a more general case, the quantity 
Ds should be given by 
 

 (13) 
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where the coefficients b and e can differ from 1/4 and 
zero respectively, in contrast to Eq. (6). In order to 
determine experimentally the value Ds in this case, one 
should measure the signals from more than three points 
on the luminous spot. Of course, this complicates the 
measurement procedure. For a polychromatic source of 
radiation, one can simplify the measurements by re-
cording signals from one point but in different spectral 
regions. In doing so one takes account of the fact that 
the quantity 4 is proportional to the fourth power of 
the radiation wavelength6 . 

When the instrumental resolution is high enough, 
and signal delays from different points on the observed 
surface can be neglected compared to the effects of 
multiple scattering, the main contribution to the 
uncertainty in Ds and s using (9) comes from the 
inherent uncertainty in the small-angle approach. For 
moderate  values, this uncertainty is given by2 

 

 (14) 
 
This value is close to 1.5s% for d/ = 3. It is obvious 
that in real experiments the contribution of meas-
urement errors to the total uncertainty can also be 
large. These errors enter the expressions for Ds and s 

in the form of differences multiplied by weighting 
coefficients whose values depend on the distance 
between the points selected for measurement. The 
contribution of these errors to the overall uncertainty 
in D and s becomes small and comparable to the 
measurement error 1 when the distance x1 between 
points is comparable to h. 
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