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A technique is developed for calculating moments of arbitrary order for radiation 
transmitted through or reflected from a layer of stochastic scatterers with strongly 
fluctuating scattering parameters. Contrast statistical properties are analyzed for an 
image transmitted through such a layer. 

 
 

A method was developed in Ref. 1 for solving the 
stochastic equation of transfer in the parabolic ap-
proximation, based on the assumption of local ho-
mogeneity (the horizontal scale of macro inhomoge-
neities in the medium is much large than the width of 
the Green’s function for the equation of transfer). The 
assumption of normally distributed scattering parame-
ters was used to calculate the first and second moments 
of the Green’s function. It is obvious that this as-
sumption is true only when variations in the scattering 
parameters are sufficiently small (weak fluctuations). 

In this paper, we study the properties of propaga-
tion through a randomly inhomogeneous medium when 
the variations are fairly large (strong fluctuations). 

Within the framework of the method used in Ref. 
1, stochastic realizations of the stochastic layer dif-
fusion coefficient at the point p are given by 
 

 (1) 
 
and a stochastic realization of the stochastic layer local 
optical transfer function (OTF)2 is 
 

 (2) 
 

 (3) 
 
A stochastic realization of the brightness of normally 
incident and observed radiation reflected from the 
layer is 
 

 (4) 
 
Here k*(r) is the spatial distribution of the effective 
absorption index of the medium (r) – *(r), where 
(r) is the attenuation index, *(r) is the effective 

scattering index,4 zs is the layer thickness, 
{reu} = ( – à (zs – u); u}, a = 0/0. 0 is the 
unit vector defining the direction of incidence on the 
layer, 0 is the projection of 0 into the plane of the 
layer, 0 is the cosine of the angle between the vector 
0 and the z-axis, i0() is the scattering phase 
function of the medium, 0() is the index of 
backscattering by macroinhomogeneities, *

0k  is the 
effective absorption index of a macroinhomogeneity, 
(; u) is an indicating function which is equal to 
unity within a macroinhomogeneity and zero outside, 
J0 is the zero-order Bessel function, and  is the 
spatial frequency. 

Using expressions (1)—(4), we can determine the 
expressions for moments of arbitrary order of the 
optical field characteristics in question. It is necessary 
to know the characteristic functionals of the random 
processes k*(r) – k[v], *(r) – [v] and 
k*(r) = *

0 ( ; )k u   – z[v] to calculate the moments 

of T(; N), T(; ) and I(; N), respectively. Then 
 

 
 

 (5) 
 
where 
 

 
 

Fairly simple expressions for characteristic func-
tionals can be obtained for Poisson-distributed scat-
tering parameters5. We know that for a Poisson 
random process, 
 

 
 
 (6) 
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where M  is the mean number of macroinhomogenei-
ties on a segment of length zs, k(v) is the character-
istic function of the random quantity *

0k  
 

 
 

and u0 is the macroinhomogeneity scale length. Ex-
pressions for the functionals [v] and z[v] can be 
obtained similarly. 

For example we adduce the expressions for the 
moments nT  and n( ) ,I N  which are valid for a 

medium whose effective absorption thickness is gov-
erned by an exponential distribution function: 
 

 
 

where *
kH  is the mean effective absorption thickness 

for macroinhomogeneities. In that case the expressions 
for n( )I N  are given by (5), where 

z(im) = exp [–2 M *
kH m/(1 + 2m *

kH )]. 

Let the scattering phase function of the medium 
be the small-angle approximation to the Hen-
yey-Greenstein function: 
 

i0() = 2(2 + 2)–3/2, where 1/2(1 ) ,      
 

and   is the mean cosine of the scattering angle. 

Than the expressions for n( )T   can be obtained 

quite easily: 
 

 
 

 
 

)(*)–1

 
 

where * = z,  = u/z, –1( ) e
x

tEi x t dt



   is the 

exponential integral, and *
H  is the mean effective 

scattering thickness for macroinhomogeneities. 
A knowledge of the moments of the optical, field 

characteristics under consideration enables one to 
calculate their distribution function, for example, by 
expanding this function in orthogonal polynomials6. 

The main shortcoming of the Poisson random: 
process model is that a Poisson distribution for the 
number of inhomogeneities is; only valid when M  is 

sufficiently large. For small ,M  the Poisson model 
simply fails to hold. Therefore, let us consider another 
model for a stochastic scattering layer. 

This model enables one to analyze the radiation 
field statistical characteristics: in stochastic media 
whose macroinhomogeneity scale length is of the same 
order as the layer thickness. 

Let us consider the coefficient of diffuse trans-
mission as an example. Calculations of transmission in 
the forward direction and of reflection will give 
similar results. 

The random quantity 
sz

*
euk

00

* ( )
du

k r 
  entering 

into (1) can be written as 
M

* *
k kj

j 1

,


    where *
kj  is the 

random value of the effective optical depth of inho-
mogeneity j, and M is the random number of 
macroinhomogeneities along the vector reu. Assuming 
the *

kj  to be statistically independent, and supposing 

that inhomogeneity j is realized with the probability 
pj, one can write down the characteristic function of 
the random quantity *

k  as6 
 

 
 
where (v) is the characteristic function of the random 
quality *

kj.  In a number of cases Pj is unknown, while 

the macroinhomogeneity size-distribution function f() 
is known. The function (v) can then be obtained 
approximately if Pj 0 when j > 2. Indeed, if this 
condition is fulfilled, then 
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