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Radiation transfer through broken clouds is discussed. The system of equations is 
derived and solved for the case of long-wave radiation of moderate intensity, taking into 
account scattering effects. The influence of scattering effects on the brightness tem-
perature of the cloud field-ground system was investigated. It is shown in this paper that 
at cloud optical depths of more than 15–20 and viewing angles below 60°–70° one can 
neglect light scattering by clouds and consider the clouds as black emitters. 

 

 

Construction of realistic models of optical ra-
diation transfer in the earth’s atmosphere is urgently 
needed to solve the problems of general atmospheric 
circulation, weather forecasting, laser sensing of the 
atmosphere, etc. Recently, the problem of providing 
an adequate description of the radiation characteristics 
and brightness fields of cloud fields with stochastic 
geometry has become of currentinterest in radiation 
transfer theory. From our point of  view the correct 
solution of this problem can be obtained only on the 
basis of the use of the stochastic radiation transfer 
equation. Averaging of this equation over the ensemble 
of cloud fields has made it possible, e.g., in Refs. 1 
and 2, to solve for the mean value, variance, and 
correlation function of short-wave radiation intensity. 

The equations for the mean value of the long-wave 
radiation intensity were derived in Ref. 3. In Ref. 3 
the dependence of the brightness temperature on the 
cloud field parameters and on observation conditions, 
although the absorption of light by aerosol particles 
and atmospheric gases was not taken into account. It 
was also assumed in this reference that scattering of 
the long-wave radiation could be neglected when 
deriving the equations. In this connection there arises 
a question on the limits of applicability of the ap-
proximate expressions obtained in Ref. 3. 
 

SOLUTION TECHNIQUE 
 

Let OXYZ be a Cartesian coordinate system. 
Assume also that the atmosphere is in a state of local 
thermodynamic equilibrium at temperature T(z), and 
that it is horizontally homogeneous except for the 
cloudy layer. Let (z) be the total absorption coeffi-
cient due to both aerosol and gaseous constituents of 
the atmosphere. Let the underlying surface be a 
blackbody at the temperature Ts = T(0). The cloud 
field occupies the layer : h  z  H. Within this 
layer we will take into account only the interaction of 
the radiation with the cloud substance, i.e. we assume 
(z) = 0 for z  . The optical characteristics of 

clouds are given in the form of random scalar fields of 
the extinction coefficient (r), as well as of the single 
scattering albedo (r) and of the scattering phase 
function g(, ) (r), where  = (a, b, c) is unit 
direction vector. Íåãå (r) is the random indicator 
field, which we will model based on the Poisson point 
processes on the coordinate axes OX and OY1,4. Such 
a cloud field is statistically homogeneous and ani-
sotropic. The shapes of individual clouds are assumed 
to be parallelepipeds of the same height H = H – h. 
Size distributions of clouds along both coordinate axes 
are described by an exponential function. The first two 
moments of (r) are expressed in terms of the un-
conditional  and conditional V(r1, r2) probabilities of 
occurence of the cloud. 
 

 
 

 
 

 
 

where A = [1.65(N – 0.5)2
 +1.04]/D, N=p is the cloud 

amount, D is the characteristic (average) cloud size. 
Within the' limits of the layer  layer the random 

intensity of monochromatic radiation I(r, ) satisfies 
the stochastic radiation transfer equation. 
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where B(z) = B(T(z)) is the Planck function, H0 is 
the height of the upper boundary of the atmosphere, 
 

 
 

In contrast with the equations for the visible and 
near—IR regions, the source function in Eq. (1) has 
an additional term, which describes the self-radiation 
of the clouds. This circumstance does not produce any 
additional difficulties, and it is possible to use the 
same ideas and methods for deriving the equations for 
the mean intensity of long-wave radiation as those 
used for the case of short-wave radiation. A detailed 
description of these techniques and ideas can be found 
elsewhere in the 1 literature . (see, e.g., Ref. 1). 
Therefore we shall omit the intermediate calculations 
in our further discussion and give only final results. 

Using the expression for correlation decoupling1,4 
one obtains, after averaging expression (1) over the 
(r) ensemble, the following complete system of 
equations 
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where ( , ) ( ) ( , ) ,pU z r I r     and brackets here 

denote the ensemble average. Since the boundary 
conditions are uniform and the model cloud field is 
assumed to be statistically homogeneous, the functions 
I  and U are independent of X and Y. Analogous to 

the short-wave spectral region, the mean intensity of 
the long-wave radiation is also invariant with respect 
to the parameters  = H and  = H/D. A formal 
solution of Eq. (4), which can be obtained using the 
Laplace transform, is as follows 
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By substituting Eq. (5) into Eq. (3) and 
changing the order of integration one obtains after 
integrating over one of the variables 
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where (z, ) has the meaning of the average intensity 
of direct radiation passed through the plane z along the 
 direction. Note that in the limiting case of   1 the 
Eqs. (5) and (9) are identical to the corresponding 
equations obtained for solar radiation5 in the visible 
region. 

Transforming in Eq. (5) to the corresponding 
volume integral, we obtain 
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where X is the phase space of coordinates and direc-
tions, x = (r, ), and (õ) is defined by Eq. (6). 

Consider now the Monte-Carlo-based algorithm 
for estimating the mean intensity * *( , )I z   of ra-

diation coming through the plane z = z* along the 

direction  = *. Since in this problem the receiver is 

located at asingle point while the radiation source is 
distributed over the entire space X, we shall use the 
method of conjugate trajectories6 to calculate the mean 
intensity value * *( , ) .I z   

Within the framework of this method the tra-
jectories are modeled starting from the point 
r*(o, o, z*) with the initial direction *. The initial 

and intermediate probability densities as well as the 
stochastic supplementary weights are determined by 
expressions analogous to these derived in Ref. 5. In 
order to estimate * *( , )I z   it is necessary to average 

the value (xc) over all points xc at which collisions 
take place (after modeling the new direction). The 
contribution of radiation arriving at the receiver di-
rectly (not scattered by the clouds, the underlying 
surface, or the atmosphere above and below the 
clouds) can be calculated using expression (10).  
 

CALCULATIONAL RESULTS 
 

In our calculations we used the optical charac-
teristics corresponding to the cloud C1 [Ref. 7] at 
 = 10 m. For simplicity the influence of aerosols 
and gases was neglected ((z) = 0 at 0 < z < Ho) 
and clouds were assumed to be isothermal at the 
temperature Tc. Under these assumptions one obtains 
from Eqs. (2) and (6) 
 

 (14) 
 

where Iz() = Bs at c > 0 and Iz() = 0 at 
c < 0, Âs = B(Ts), and Âc = B(Tc). Let us write the 
function ( ,I z   in the form ( ,I z   = (z, ) + 

i(z, ), where i is the mean intensity of diffuse ra-
diation. According to Eq. (10) one has 
 

 (15) 
 

and 
 

 
 

where ic and is are the mean intensities of diffuse 
radiation from clouds and the underlying surface. 

The mean intensity 0( , )I z   of radiation, trans-

fered in the nonscattering clouds  ( = 0) is given by3 
 

 (16) 
 

In the case of nonscattering clouds the underlying 
surface contributes only to the upwelling radiation 

(c > 0), which is entirely accounted for by the 
function . If scattering effects are taken into con-
sideration, the radiation from the underlying surface 
can make an appreciable contribution to the down-
welling scattered radiation (c < 0) as well as to the 
upwelling scattered radiation, which can be one of the 
main reasons for the difference between 0I  and .I  

It can be seen from expressions (11) and (16) that 
under conditions of no temperature inversion 

0( , )I z   is a decreasing function of the zenith look 

angle ar cos c   for upwelling radiation and an 
increasing function of the look angle for the case of 
downwelling long-wave radiation. One can obtain 
from Eqs. (15) and (16) that 
 

 
 

 (17) 
 

where the first term describes the decrease of the direct 
radiation from clouds due to scattering. 

Let T0 and T be the brightness temperatures 
corresponding to 0I  and .I  The value Ò = Ò0 – 

Ò is the error in the determination of the brightness 
temperature of the system "cloud field – underlying 
surface", due to ignoring of the cloud scattering 
properties in the infrared. Let us now investigate the 
dependence of T on the zenith look angle, and on the 
geometrical and optical parameters of the clouds for 
upwelling () and downwelling () radiation at the 
cloud field boundaries. The calculations were made for 
temperatures TS = 290 K and TC = 255 K and height 
interval H = 1 km. The azimuth angle measured from 
the plane XOZ was taken to be zero, the other pa-
rameters are given in figure captions. It should be noted 
that at these temperatures the intensities of radiation 
emitted by the ideally black underlying surface and by a 
unit volume of clouds differ almost by a factor of 2. 

The value T is graphed in Fig. 1 as a function of 
 and N. In the case of downwelling radiation, an 
increase in N results in an increase of the cloud con-
tribution to the direct radiation recorded by the re-
ceiver and an increase in C[1 ( )].B j z    On the other 

hand, for larger N values the intensity of scattered 
radiation on average increases, and the cloud-radiation 
interaction begins to play a significant role at large N 
valuesl. This, in turn, increases, the portion of radia-
tion emitted by the warmer surface which is reflected 
by the cloud layer. The contributions due to these 
factors have opposite signs (expression 17), for which 
reason the intensity i(h, ) increases with the in-
crease of N more rapidly than the value 

C[1 ( )].B j z   The more rapid increase of i(h, ) 
takes place first of all as a result of the contribution of 
the surface radiation reflected back by the cloudy 
layer. Therefore T becomes smaller at larger N for 
all viewing angles. As N  0, and in the case of 
optically thick clouds also as N  1 the contribution 
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from the surface radiation scattered by the clouds 

Si
 (h, ) to the total intensity i(h, ) vanishes. This 

means that Si
 (h, ) is a nonmonotonic function of N, 

thus explaining the more complicated behavior of T as 
a function of N. 
 

 
 

FIG. 1. Results illustrating the effect influence of 
zenith look angle ; and the cloud amount N on the 
value of T for  = 1,  = 10, and N = 0.1 
(curve 1), 0.5 (curve 2), and 0.9 (curve 3). Here 
and below in Figs. 2 and 3 solid curves represent 
the results for downwelling radiation (c < 0, 
z = h), while the dashed curves represent the 
results for upwelling radiation (c > 0, z = H). 

 

As follows from the initial formulation of the 
problem and from the above-discussed assumptions, 
not taking into account the radiation emitted  
i(h, –) = i(H, ), and according to (17), 
T=T. In fact, T < 0 for directions near the 
horizon and vice versa for T (see Fig. 1). These sign 
changes and differences between T and T are due 
to the effect  of surface radiation. Due to the large 
asymmetry of the scattering phase function of the 
cloud particles in the forward direction, the radiation 
of the underlying surface exiting the cloud tops and 
sides via a process of multiple scattering can strongly 
increase the intensity of the upwelling scattered ra-
diation. The large role of the cloud sides in forming 

S ( , )i H   in the presence of absorption ( = 0.638) is 
also caused by the fact that radiation coming out 
through them undergoes fewer scattering events than 
the radiation coming out of clouds through their tops. 
The value of the mean intensity S ( , )i H   reaches its 

maximum at looking angles   50–60 when the 
received radiation can come from both cloud tops and 
sides. At larger  and N the intensity of the upwelling 
radiation i(H, ) rapidly decreases because of the fast 
growth of the mean optical depth of such a viewing 
direction, which, as a result, significantly decreases 
the probability (due to absorption and scattering) of 

surface radiation coming through the clouds. This 
explains the angular dependence of T. For the case 
of downwelling radiation, the intensity 

S ( , )i H  reaches its maximum in the vicinity of the 

horizon, which results in a decrease in T at large  
values. 

The influence of variation of horizontal cloud 
dimensions on the formation of the long-wave radia-
tion field is illustrated by Fig. 2. 
 

 
 
FIG. 2. The quantity T as a function of zenith 
look angle  and the parameter  = H/D when 
N = 0.5,  = 10,  = 0(curve 1), 1 (curve 2), 
and 2 (curve 3). 

 
For fixed geometrical cloud thickness the number 

of clouds forming the cloud field decreases, on the 
average, with decrease of  = H/D. Therefore the 
relative role of the cloud sides becomes less important 
in forming the brightness field of the radiation 
modulated by broken clouds. For  = 0, as in the case 
with optically thick clouds (  10 or more), one can 
see that S ( , )i z  ` ic(z, ) and the upwelling diffuse 
radiation is formed only by the radiation from clouds, 
while the radiation emitted by the underlying surface 
is practically entirely! absorbed and reflected back by 
the cloudy layer. In the asymptotic case   0, the 
parameter ( ) 1/A D


f  also vanishes and the condi-

tional probability ( , , ) 1.V z   


 Then, as follows 
from expressions (3) and (4), 
 

 (18) 
 

where ( , )I z 
  is the intensity of long-wave radiation 

in a solid cloud cover with extinction coefficient . 
Maximum values of  for stratiform clouds are8 10–2 to 
10–3 and expression (18) well describes the brightness 
field of stratus clouds partially covering the spatial 
region of interest. 
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Neglecting the boundedness of the horizontal 
dimensions of cumulus clouds (  0.5 to 2.0)8 when 
estimating the contribution of scattering to the process 
of thermal radiation transfer leads to errors in excess of 
1 K for the above parameters of the problem (see 
Fig. 2, curves 1, 2, and 3). 

One can see that starting at some value, further 
increase of the optical depth due to absorption by 
cloud particles results in a weakening of theinfluence 
of cloud size on the brightness field since there occurs 
in such a situation a decrease of the dimensions of the 
region where the radiation field exiting through the 
cloud sides is formed. In this particular sense an in-
crease in  is equivalent to a growth of D, which is 
confirmed by the calculated results presented in 
Fig. 3. If 1 K taken as the accuracy criterion, then for 
viewing directions near the horizon  > 60–70 one 
must take into account scattering effects at any optical 
depth of cumulus clouds while at viewing angles 
 < 60–70 the scattering properties of clouds can be 
neglected up to  values of 15 to 20. 

In this case, according to Eq. (16), the mean 
intensity is determined by the function ( ),j z  which at 
such large optical deptho is a linear function of the 
probability that the viewing direction is occluded by 
clouds. As a consequence, at  > 15–20 and 
 < 60°–70° one can neglect the scattering of radia-
tion by clouds and, moreover, it is possible to treat the 
clouds as blackbody radiators, which essentially 
simplifies the investigation of the statistics of 
long-wave atmospheric radiation intensity in the 
presence of cumulus. 
 

 
 
FIG. 3. Results illustrating the dependence of T 
on zenith look angle  and optical depth  at 
N = 0.5 and  = 1 for  = 5 (curve 1), 10 
(curve 2), 40 (curve 3, and 100 (curve 4). 

 
 

In Ref. 9 the cloud field is modeled by a regular 
three-dimensional array of clouds of parallelepiped 
shapes with the same dimensions. The radiation transfer 
equation is solved in this case using the modified 
two-stream approximation9,10 determination of the 
boundary conditions, which must take into account, at 
least approximately, the multiple scattering of radiation 
between clouds, utilizes the assumption of the homo-
geneity and isotropy of radiation exiting the cloud sides. 
In order to assess the influence of cloud field stochas-
ticity on the mean intensity of upwelling radiation, we 
have calculated the brightness temperatures for two 
models of cumulus clouds, the parameters of the problem 
being the same, on the average, in both cases. The results 
of these calculations are presented in Fig. 4. It is seen 
from this figure that at small and large N values the 
differences between the brightness temperatures are too 
small, while in the range 0.3  N  0.7 they can 
amount to 5 K. It should be noted that maximum de-
viations are observed at smaller zenith angles for larger 
N values. 

Thus, in conclusion, it can be stated that the 
contribution of scattering effects to the formation of the 
brightness field of broken clouds in the long-wave 
spectral region has been assessed. Also the limits of 
applicability of the approximate method for calculating 
the mean intensity have been estimated. The method 
treats the clouds as blackbody emitters. The results 
obtained here can be useful in estimating the distortions 
due to a cloud field in the problem of remote sensing of 
the ocean surface temperature from space. 
 

 
 

FIG. 4. The brightness temperature of scattering 
clouds as a function of zenith look angle  and cloud 
amount N, for two models of the cloud field at 
 = 1,  = 10. Solid curves represent results from 
Ref. 9, dashed curves ---- our calculations for 
broken clouds. Here N = 0.1 (curve 1), 0.3 
(curve 2), 0.5 (curve 3), 0.7 (curve  4), 0.9 
(curve 5) and 1 (curve 6). 
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