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This paper presents the results of an investigation into the problem of determination 
of the energy structure of a light beam based on tomographic methods of processing the 
data of light scattering experiments.  

 
 

One approach to noncontact measurements of the 
energy structure of a light beam can consist in 
recording the radiation scattered from the beam at 
different angles with successive reconstruction of the 
power distribution over the cross-section of the beam 
by computer methods of the reconstructive 
tomography (CRT). The possibility of realizing such 
an approach has been quite thoroughly investigated in 
Refs. 1–3 on the basis of the radiation transfer 
equation. But the question of the manner of obtaining 
the ray sum used in the reconstruction algorithms is 
yet open. This question is of paramount importance in 
the problem under discussion because of the extremely 
low intensity of the scattered radiation and the 
possible influence of diffraction of the radiation by the 
receiving aperture. 

This paper deals with an investigation into the 
possibilities of applying CRT methods to the diagnostics 
of the energetics of the scattering channel under 
conditions of photoelectric recording using the simplest 
method of collimation of the received radiation. The 
reception scheme and the sources of measurement errors 
are analyzed, based on an emission model which uses a 
wave approach for the description of the radiation. 

Let us represent the scattering channel as a 
cylinder containing a uniform distribution of particles 
which are the sources of the secondary radiation. The 
intensity of the radiation from each such source is 
assumed to be proportional to the intensity of the 
incident radiation. The effects of particle screening in 
the direction perpendicular to the cylinder axis are 
considered to be negligible, which corresponds to the 
case of linear interaction of the radiation with the 
medium and single scattering of the light by the 
monodispersed ensemble of particles. 

Let us consider the simplest scheme of reception 
in which the beam is collimated using a diaphragm of 
radius . The center of this diaphragm coincides with 
the origin of the coordinate system, the x-axis is 
perpendicular to the diaphragm plane, and the z-axis is 
parallel to the axis of the investigated channel. The 
detector measures the intensity of the radiation 
scattered at the points r1(y1, z1) of the which is at a 

distance x1 from the (y, x) plane and parallel to it. Let 
now the (y0, z0) plane, which is at the distance x0 from 
the (y, z) plane and parallel to it, be the longitudinal 
section of the channel and t(x0, r0) be the spatial 
distribution of the amplitude of the direct radiation 
field. Then, at an arbitrary point r1 of the reception 
plane the field of radiation scattered from the (y0, z0) 
plane may be represented as the superposition integral 
 

 
 

 (1) 
 

where () is the scattering function,  = (x0, r0, r) is 
the angle between the observation direction and the 
incident wave polarization vector, r0 and r are two 
two-dimensional radius vectors in the (y0, z0) and (y, z) 
planes, respectively, Ð(ã) = ñiãñ(r/) is the pupil 
function, and k = 2/, where  is the wavelength. 

The contribution of all scattering centers of the 
channel to the radiation intensity at the point r1 can be 
obtained as an integral of U(x0, x1, r1) over all 
cross-sections of the channel. 

It is then necessary to determine the conditions 
under which the received radiation intensity radiation 
 

 
 

can be represented, at least asymptotically, as the 
Radon transform of the direct radiation intensity 
I0(x0, r0) = <| t(x0, r0) |

2> in the channel. 
Let us first consider the case when the diaphragm 

is in immediate proximity to the investigated channel 
and the cross-section size d of the investigated channel 
is sufficiently small so that the following condition 
 

 (2) 
 

holds for all points lying within the detector field of 
view. Supposing () to be a slowly varying function  
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of r and making the projective transform of the pupil 
function, one obtains after integration over r: 
 

  
 

 
 

 
 

It is then easy to obtain 
 

  
 

 
 

if the scattering centers are statistically independent. 
It is easy to make out the asymptotic behavior of 

this integral by making use of the well-known 
definition of the -function: 
 

 
 

Then, for /x1  0, one obtains the approximate 
expression 
 

 (3) 
 
where S = 2. 

This approximate equality becomes more accurate 
with decrease of the viewing angle of the detector 

2
1/ .S x  Decrease of the viewing angle is limited in 

practice by the threshold sensitivity of the detector. 
Thus, the additive errors associated with the use of 
formula (3) influence the spatial resolution, whose 
linear magnitude can be estimated as follows: 
 

 
 

It should be noted that violation of condition (2), 
which can occur, in particular, when studying 
excessively broad channels, will result in substantial 
distortions of the information. Thus, for example, if 
the radius  coincides for some points (x0, r0) of the 
path with the size of the even Fresnel zones, the 
contribution from these points to the intensity of the 
scattered radiation will be less than that from the 
points for which  coincides with the size of the odd 
Fresnel zones. In this case one cannot obtain a 
relationship similar to Eq. 3, which obviously 
demonstrates the inapplicability of the given 
measurement technique under these conditions. 

Let us now consider the case when  2
0/ 1x n  

and  2
1/ 1,xn  which corresponds to the 

Frauenhofer approximation of this diffraction 
problem. 

Integrating over r in formula (1) and taking into 
account the statistical independence of the scattering 
particles in the channel, we obtain 
 

 
 

 
 
where J1(x) is the Bessel function of the first kind. 

It is easy to show that the function [J1(Nr)]2/r2, 

where 2 2 ,r x y   has all the features of the 

two-dimensional -function as N  . Therefore 
I(x1, r1) can be represented asymptotically by the 
linear integral (2) under the conditions /  . 

Since the conditions  2
0/ 1x n and /   

cannot be fulfilled simultaneously, the errors of 
representing I(x1, r1) in the form of a ray sum are 
mainly caused by the diffraction. The linear scale of 
the spatial -resolution in this case can be estimated as 
  0.61 L/, where L is the maximum distance 
from the diaphragm to the points of the channel. 

In the experiment the radiation sources were 
LG-75 gas lasers operating in the regime of 
fundamental mode generation. Two parallel beams 
separated by a distance comparable to their dimension 
d at half maximum power (FWHM) were formed by 
two beam expanders Bind a system of mirrors. The 
intensity distribution of the scattered radiation (in air) 
at an angle of 90° was measured by a scanning 
receiving system. Such a system permits one to obtain 
projections with a digitization interval of 1 mm, 
which for observation angles (aspect angles) from 0 to 
360 did not exceed 20% of d. The photomultiplier 
FEU-79 was used as the detector. To improve the 
signal-to-noise ratio (SNR), the laser radiation was 
modulated at 1 kHz frequency and the photocathode 
of the PMT was cooled down to t = –20C. A 
collimator 100 mm long and 0.8 mm in diameter was 
placed in front of the entrance window of the PMT. 

The chosen geometry of the experiment ensures 
the satisfaction of inequality (2) and conditions of 
reliable recording of the scattered radiation at SNR 
levels much greater than unity. 

Typical projections of the scattered radiation are 
shown in Fig. 1. Curves 1, 2, and 3 characterize the 
radiation from the first beam, from the second beam, 
and from the two beams placed one after the other, 
respectively, for an observation angle  of 0. Curve 4 
is the arithmetic sum of curves 1 and 2. Curve 5 
represents the radiation from the two beams at 
 = 90. The almost perfect coincidence of the 
combined curve (3) and the beam scattering arithmetic 
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sum (4) demonstrates the adequacy of the adopted model 
of interaction between the radiation and the medium. At 
the same time, the strong dependence of the projections 
on  (see curve 1, 2 and 5) makes it necessary to take 
into account the scattering phase function (0). 
 

 
 
FIG. 1. Experimentally measured projections of 
the scattered radiation. 

 
These results demonstrate the possibility of using 

computer-assisted tomographic methods in this 
application. In the realization of these methods, the 
light beam cross-section scanning data were inputs to 
the corresponding computer programs. Taking into 
account the () values and the experimental 
digitization interval of the projections, the direct 
Radon transform was calculated, giving to within a 
proportionality constant the set of projections of the 
scattered radiation. To determine the degree of 
adequacy of the calculated projections to the 
experimental data, the correlation coefficient K1 was 
calculated, which for  = 0 and  = 90 was greater 
than 0.99 (the beams were placed side by side and one 
after another, respectively). This fact permitted us to 
consider K1 to be highly significant at a significance 
level of 1  10–3 and to be able to speak of complete 
agreement between the calculated projections and 
the experimental data. The reconstruction of the 
optical beam profile from the calculated projections 
was made by the Fourier inversion method.4 The 
matrix P of discrete readings P(m  S, n) 
comprised the input data for this method. Here 
n = n,  is the step of the projection 
orientation angle, n = 1, N, N is the number of such 
steps, and S is the discretization step in taking the 
M readings of the distance s along the projections, 

where / 2, / 2 1m M M    if M is even. 
In the first stage of the reconstruction, based on 

the fast Fourier transform (FFT) procedure applied to 
the matrix P, the matrix of values of the spatial 
frequency spectrum was formed on the polar grid, the 
elements of which are given by the expression 
 

 
 

where 1, M   and R = 1/MS is the spectrum 
digitization interval. 

To ensure the possibility of repeated application of 
the FFT procedure to obtain the inverse Fourier 
transform in the second stage of the reconstruction, the 
interpolation of values from the polar grid to a rectangle 
grid in the x, ó spatial frequency plane was carried out. 
The elements of the matrix f1(u  Õ, v  Y), 

/ 2, / 2 1,u U U    / 2, / 2 1v V V    were 
determined as a weighted sum of the quantities 
1(  R, n) at four adjacent points where X, Y 
were the spectrum digitization intervals, U, V were 
the dimensions of the spectrum matrix on the rectangle 
grid, for U and V even. At the final stage of the 
reconstruction, the elements f of the LK matrix of the 
intensity distribution were given by 
 

 
 

 
 

where 1 1, ,l L  1 1, ,k K  and x = 1/UX and 

y = 1/VY were the discretization steps of the 
representation of f. 
 

 
 

FIG. 2. Initial and reconstructed intensity 
distributions. 

 
The reconstruction algorithm was realized on the 

microcomputer "Elektronika-60." Reconstruction time 
did not exceed 1.5 min for M = N = 32. An estimate 
of the quality of the reconstruction was made based on 
the value of the correlation coefficient K2 between the 
initial and reconstructed distributions. An example of 
the functioning of the algorithm is presented in Fig. 2, 
where the initial (a) and the reconstructed intensity 
distributions (b) for N = 2, M = 32,  = 90 
(K2 < 0.5) are depicted. In addition, Fig. 2c presents 
reconstruction results (K2 > 0.8) for N = 4, M = 32, 
 = 45, and correction of p(m  S, n) obtained by 
multiplying it by the function fk = [(n)]

–1, 
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and Fig. 2d presents reconstruction results (K2 > 0.6) 
for N = 4, M = 32,  = 45° without this correction. 

It can be seen that if one allows for () and 
assumes a simple beam shape formed by a superposition 
of two Gaussians with d1 comparable to d, the chosen 
geometry of the experiment ensures satisfactory 
reconstruction already for N = 4. 

On the whole, this experimental study 
demonstrates only the possibility of reconstructing the 
beam energy structure for sufficiently simple profiles 
under the conditions of the above-mentioned 
approximations. 
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