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The theory of polarization sounding of dispersed scattering media as it applies to 
optical monitoring of aerosol atmospheric pollutants is presented. The proposed methods 
of interpretation are based on integral operators of the mutual transformation of the 
elements of the Mueller matrix for a polydispersed system of spherical particles. Operator 
equations for determining the refractive index of the material of the particles under study 
are constructed. The information possibilities of the operator approach are illustrated in 
the paper for the example of the solution of a complex atmospheric-optical problem 
concerning the separation of molecular and aerosol scattering matrices based on 
polarization measurements. 

 
 

Optical sounding of dispersed scattering media 
with polarized radiation is based on the analysis of the 
scattering matrix ij

ˆ { },D D  which transforms the 

Stokes vector of the scattered wave (0)I


 into the 
vector of the incident wave I(s). The collection of 
elements {D^} contains the physical information about 
the medium under study; this information can in 
principle be extracted from polarization 
measurements. The exact theory of polarization 
sounding is based on the principle of combined 
interpretation implemented with the help of special 
mutual transformation operators, of the entire 
aggregate of elements of the matrix ˆ .D  This theory is 
presented in a monograph written by the author.1 

This paper is devoted to further development and 
extension of the theory of polarization sounding of 
dispersed media and, in particular, the extension of the 
operator approach not only to combined inversion of the 
elements of the Muller matrix, but also to their 
interpretation in an experiment with a deficiency of 
measuring information. It should be noted that in 
atmospheric-optical studies the method of polarization 
sounding is implemented technically with the help of 
nephelometers based on the ground of airborne and 
bistatic lidars. These optical system^ can play an 
important role in the organization of optical monitoring 
of atmospheric pollutants. The theory of interpretation 
presented below enables the development of practical 
methods for studying real aerosol systems of both 
natural and human origin using the indicated devices. 
 

THE LIGHT-SCATTERING MATRIX OF  
A POLYDISPERSED SYSTEM OF PARTICLES AND  
THE MATRIX OF OPERATORS OF THE MUTUAL 

TRANSFORMATION OF ITS ELEMENTS 
 

The fact that the elements of the scattering matrix 
can be regarded as a collection of mutually coupled 

functions of the scattering angle   can be clearly 
illustrated for the example of a polydispersed system of 
spherical particles. Indeed, in the latter case any element 
of the corresponding scattering matrix as a function of 
the angle   and the wavelength  can be represented by 
a one-dimensional parametric integral of the form 
 

 (1) 
 

The factors ij( , , , )Q m r    are calculated using the 

formulas of Mie’s theory with a fixed refractive index 
m of the constituent material of the particles. In the 
integral representation (1) the function n(r) 
characterizes the particle size spectrum in the interval 
R = [R1, R2]. It is not difficult to see that the 
variables   and  play the role of parameters; this 
explains the use of the term "parametric integral". In 
what follows we shall write intergral of the type (1) in 
a more compact form, introducing the integral 
operators Q. Then expression (1) will be equivalent to 
the notation D(  ) = (Qs)(  ) where s(r) denotes 
the function r2n(r). The introduction of the operators 
Q is also justified from the computational viewpoint 
because they can be very simply replaced by matrix 
operators Q̂  when discrete measurement are 
processed. It should be stressed that the assumption 
that the scattering particles are spherical determines 
not only the structure of the matrix {Dij} but it also 
gives a method for calculating its elements 
numerically. 

We shall now examine together the pair of 
elements D11( ) and D11( ) of the Mueller matrix 
for a system of spherical scattering particles. Each of 
these functions is represented by the indicated integral 
with a corresponding kernel. In the first case it is given 
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by the expression [i1(x,  ) + i2(x,  )]/2x2, where 
i1 and i2 are functions of the dimensionless intensity 
and x = 2r/, while in the second case it is given by 
the expression [i1(x,  ) – i2(x,  )]/2x2. From the 
analytical viewpoint the optical characteristics 
D11(  ) and D12(  ) cannot be regarded as fully 
independent, at least because they have, as parametric 
integrals of the form (1), a common weighting 
function s(r). This last fact can be constructively 
employed to construct a functional (operator) 
equation relating the indicated characteristics. Indeed, 
assuming, for example, that the function D11(  ) is 
known and starting from its representation 
D11(  ) = (Q1s)(  ) it is possible to construct the 
inverse regularizing operator 1

1Q
  with the help of 

completely standard computational procedures. This 
operator gives a well-grounded estimate 

1
1 1( ) ( )( )s r Q D r

   of the weighting function s(r). The 

function s(r) approaches the exact distribution s0(r) 
as   0, if the error  in D11(  ) also approaches 
zero. With the help of this approach it is possible to 
construct the function 
 

 (2) 
 

which gives an estimate of the element D12( ). Thus, 
relying on methods for inverting parametric integrals, 
we constructed an operator ( )

21W   which relates the 
two elements D11 and D12 of the scattering matrix. By 
studying in pairs the remaining elements of Mueller’s 
matrix for a system of spherical particles a 
corresponding matrix of operators ( )

ij{ }W   can be 

constructed. The methods for constructing such 
operators, including operators arising in the theory of 
multifrequency optical sounding of dispersed media, 
Eire presented in Refs. 1, 2, and 3. We note only that 
the elements and obviously have a greater analytic 
similarity than that which formed the basis of the 
construction of the operator ( )

21 .W   To prove this, it is 
sufficient to study the analytical form of the kernels 
Q11 and Q12, and their dependence on the functions i1 
and i2. Unfortunately, it is not yet possible to give a 
simple method for applying this feature in practice in 
the problems of interpretations, if one starts from the 
computational formulas given in Mie’s theory.4 

 
OPERATOR EQUATIONS FOR DETERMINING 

THE ELEMENTS OF THE SCATTERING 
MATRIX FROM POLARIZATION 

MEASUREMENTS 
 

In optical experiments on the scattering of 
polarized light by real dispersed media it is not the 
components of the Stokes vector themselves that are 
measured but rather some quantities (s)

jP  

(j = 1, 2, 3, 4). The relation between the vectors I(s) 
and P(s) in the single-scattering approximation is quite 

simple: 
 

 (3) 
 
where Â is some function of the distance z from the 
receiver to the scattering volume (for a bistatic 
polarization lidar), the angle  , and the parameters of 
the receiving measuring channel. The collection {Pj

(s)} 
(the same as the vector P(s)) can be denoted by a single 
term "optical signal". We shall now study the 
functional equations which relate the components of 
the vectors I(s) and I(0) with the elements of the 
scattering matrix. The structure of the matrix D̂ , 
which transforms the vector I(0) into I(s), for 
polydispersed systems of spherical particles permits 
writing out separately two equations for I2

(s)and I1
(0) 

and two equations for the next pair of components 
I3

(s)and I4
(s). The first pair has the form: 

 

 (4) 
 
and the second pair has the form 
 

 (5) 
 

If the polarization of the sounding radiation is 
chosen so that I2

(0) = 0, then the first element of the 
scattering matrix D11 usually called the coefficient of 
directed light scattering is expressed very simply in 
terms of I1

(0)and I1
(s), namely, I1

(s) = D11 I1
(0). 

Introducing the ratio a1
(s) = I1

(s) / I1
(0) into this 

equality we find 
 

 (6) 
 

Since the function    1 ,sa  where  is the 
scattering angle, is determined directly in an 
experiment we can talk about direct measurement of 
the optical characteristic D11(  ). If a1

(s) (  ) is known 
with an error not exceeding 5–10% in the range of 
angles (0, ), then inversion of the characteristic 
D11(  ) gives a completely consistent estimate of the 
particle-size spectrum.3 The corresponding inverse 
problem requires that the refractive index of the 
aerosol material be known. At the same time, if the 
optical constants of the material 'm  and ''m  are 
known a priori for the system of spherical particles, 
then the matrix of operators {Wij}, which was 
discussed above, is also determined in equal measure. 
To simplify the writing of the transfer operators, we 
shall drop below the upper index "". 

If the operator W21 is introduced into the first 
equation of the system (4) by replacing D12 by 
W21D11, then we obtain a new functional (operator) 
equation for D11 
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 (7) 
 

where (0) (0) (0)
2 2 1/ .c I I  Since operators of the type W 

are integral operators, Eq. (7) is an integral equation 
of the second kind and therefore the problem of solving 
it is a properly posed mathematical problem. Equation 
(7), unlike Eq. (6), permits finding the element D11 in 
the case of arbitrary polarization of the incident 
radiation. Of course, this requires completely 
determined a priori information about the dispersed 
medium under study, since the computational formulas 
of Mie’s theory must be employed to calculate the 
matrix analog 21Ŵ  for the operator W. Thus Eq. (7) 

permits finding the function 11( )D   from 

measurements of only one component (s)
1I  with an 

arbitrary vector I(0). Since in the case of arbitrary 
polarization the first equation of the system (4) is not 
determined in and of itself because it contains two 
unknown functions 11( )D  and 12( ),D  it can be 

asserted that introducing the operator W21 is 
essentially equivalent to reducing the volume of 
measuring information. In the approach presented the 
elements 11( )D   and 12( )D   are determined from (s)

1I  
using the information contained in Mie’s theory, i.e., 
in the theory describing the scattering of an optical 
wave by a spherical particle of size r with a fixed 
refractive index. The example studied clearly 
illustrates the possibilities of the operators Wij and 
their role in the described theory of polarization 
sounding of dispersed media. They permit further 
determining the equations which in and of ‘ themselves 
are not determined owing to the lack of the 
corresponding measurements. 

Let us return to Eq. (7). If the numerical solution 
of this equation is constructed based on the method of 
successive approximations, i.e., in accordance with an 
iteration scheme of the form 
 

 (8) 
 

where p is the number of the approximation; 
(0) (0)
2j 2 j( );c c   D1 = 11 1( )D   and ij 21

ˆ{ } ,w W  then, 

as is well known, the condition 
 

 (9) 
 

must be satisfied. 
Since the equality 

 

 (10) 
 

holds for the incident polarized radiation, (0)
2 ( ) 1c    

for all angles   in the range (0, ). In this connection 
it remains to show that 
 

 (11) 
 

The operators satisfying this condition are customarily 
called compression operators. 

If one starts from the equality (10), the condition 
 

 (12) 
 

and the expressions for Dij obtained from Eqs. (4) and 
(5), then it is not difficult to show that the following 
inequality holds: 
 

 (13) 
 
The relation (13) is sufficient to prove (11) rigorously. 
Similar inequalities for the operators Wij play a very 
important role in the construction of iteration schemes 
for processing optical data. 

In finishing our analysis of the questions 
pertaining to the determination of the coefficient of 
directed light scattering 11( )D   for an aerosol system 
of particles based on data from polarization sounding, 
we must call attention to one other important 
application of the operators Wij. In accordance with 
Eq. (6) the function 11( )D   can also be found in the 
case of sounding of the dispersed medium under study 
with unpolarized light for which (0) (0)

1{ , 0, 0, 0}.I I
 

 

If in so doing the operators Wij, can be calculated in a 
well-sounded manner, then it is also possible to 
determine all of the remaining elements of Dij. As a 
result it is possible to solve a very important optical 
problem, namely, to predict the "response" of an 
aerosol system to an incident polarized wave from data 
obtained by sounding the system with unpolarized 
light. The possibility of solving such prediction 
problems is another advantage of the method of optical 
operators or, more precisely, the method of the inverse 
problem of the theory of light scattering by 
polydispersed systems. The enumerated possibilities 
are realized with the help of corresponding program 
complexes for optical data processing and 
interpretation6. It should also be noted that the . 
information possibilities of the optical operators Wij in 
the analysis and interpretation of the light-scattering 
data can be fully determined in the solution of more 
complicated optical problems than the ones discussed 
above. The point is that the structure of the matrix 
{Dij} for a system of spherical particles is very simple, 
and no special difficulties arise in the solution of the 
starting system of functional equations from the theory 
of polarization sounding. The other problem arises 
when structurally more complicated scattering 
matrices are encountered in atmospheric-optics 
studies. An example of this is a polydispersed system of 
nonspherical particles oriented randomly in the 
illuminated volume. Such a- system of particles 
corresponds better to real aerosol systems than an 
ensemble of spherical particles. For a system of 
nonspherical particles oriented randomly in the 
scattered volume, the system of four equations 
associated with the transformation (s) (0)D̂I I   
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contains six unknown functions ij( )D  . It is obvious 

that it is not determined and it is necessary to increase, 
in an appropriate manner, the volume of experimental 
measurements by means of sounding with radiation 
with different polarization. Because of a technical 
difficulty such experiments can hardly be performed 
under the conditions of the real atmosphere. Currently 
existing data, as a rule, were obtained under 
laboratory conditions.7 

An alternative solution of this problem can be 
obtained on the optical operators Wij, supplementing 
the system (s) (0)D̂I I  with operator equations 
relating the unknown functions Dij. In using 
computational methods significant, but fully 
surmountable, difficulties, associated with the 
calculation of the light-scattering characteristics of 
nonspherical particles, arise.7 The possibility of 
determining the matrices from the corresponding 
experimental data, obtained by means of polarization 
sounding on model aerosol systems under laboratory 
conditions, also should not be overlooked.2,3 
 
DETERMINATION OF THE REFRACTIVE INDEX 

OF THE CONSTITUENT MATERIAL OF 
THE SCATTERING PARTICLES FROM 

POLARIZATION MEASUREMENTS 
 

If the first problem of the theory of polarization 
sounding of dispersed media is to determine the elements 
of the scattering matrix {Dij}, then the problem of 
determining the real and imaginary parts of the complex, 
refractive index of the constituent material of the 
particles must be regarded as the second problem. In 
constructing the corresponding computational 
procedures we shall assume that the coefficient of 
directed light scattering 11( )D   has already been 
determined previously by one of the methods studied 
above. To find the refractive index from the components 
of the vector (s)I


 it is now no longer necessary to know 

their absolute values or the ratios (s) (s) (0)
1 1 1/ .a I I  We 

can thus transfer to the polarization vector 
(s) (s) (s) (s)

2 3 4{1, , , },c c c c


 introducing its components into 
the corresponding computational formulas. We rewrite 
the system (1) using the operator W21: 
 

 (14) 
 

Introducing the ratio (s) (s) (s) (s) (s)
2 2 1 2 1/ / ,c I I P P   

which does not depend on the instrumental function 
( , )B z   whose determination for a bistatic 

polarization lidar is a very difficult problem the system 
(14) can be reduced to the following equation: 
 

 
 

This equation can be greatly simplified by denoting the 
ratio (0) (0)

2 1/I I  by (0)
2c  and introducing the quantity 

(0) (0) (s)
2 2 2( 1)( )g c c c    which, of course, is a function 

of the scattering angle  . Based on these remarks we 
obtain finally 
 

 (15) 
 
In this equation the operator is unknown, since the 
refractive index m m im    is unknown. It must be 
especially stressed that the operator W21 does not 
depend on the particle-size distribution function. For 
this reason if the function 11( )D   has been found in 

the experiment, then the determination of m  and m  
from Eq. (15) does not require a priori knowledge of 
the particle-size spectrum. In this respect the method 
described here for determining m  and m  which is 
based on the parametric dependence of the operator 

21( , )W m m   differs significantly, with regard to its 
mathematical rigor and effectiveness, from numerous 
methods based on the parametric dependence of the 
optical characteristics on the microstructure and 
refractive index. A typical example is Ref. 8. 

It now remains to employ the pair of equations (5) 
for D33 and D34. Introducing by analogy (s)

3c  and (s)
4c  

we obtain 
 

 (16) 
 

 (17) 
 

The expressions (15)—(17) form a complete system of 
operator equations of the theory of polarization 
sounding which depend on the index .m  In the 
general case, as already shown above, to determine D11 
it is necessary to known the operator W21, i.e., the 
parameters m  and ,m  so that the indicated system 
of three equations, strictly speaking, is not 
overdetermined. It should also be kept in mind that by 
virtue of the inequalities (13) the operators Wij in the 
last three equations cannot be regarded as being 
completely independent. For this reason, to determine 
the two quantities m  and m  we actually have the 
two operator equations (16) and (17). Since the 
computational algorithm is usually constructed by the 
method of least squares it is preferable to employ all 
three equations together, combining them by the 
overall optical discrepancy. We note that the starting 
system of three equations assumes its simplest form in 
the case when the incident light is linearly polarized 
when (0)c 


 {1, 0, 1, 0}, namely, 

 

 (18) 
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The optical discrepancies for these equations can be 
written in the form 
 

 
 

 (19) 
 

The vector (S)C


 is the  approximation for the starting 

(exact) vector (S)
0 .C


 The indices m  and m  are 
determined by minimizing simultaneously the optical 
discrepancies. In those cases when the operator W21 
must be employed to determine D11 the general 
computational scheme is constructed by the method of 
successive approximations. 

In conclusion it should be noted that any pair of 
equations in the system (18) formally determines not 
only the constants m  and ,m  but also some 

functions ( )m r  and ( ).m r  Indeed, any equation in 
the system (18) can be put into the form 
 

 
 

For this reason the system (19) must actually be 
replaced by a system of nonlinear integral equations of 
the indicated type (Urison’s equations9). The physical 
problems for which the dependence of m  and m  on 
the particle size is important arise in the study of 
aerosol systems, interacting, for example with the 
moisture field, by optical methods.1 
 

SEPARATION OF THE MOLECULAR AND 
AEROSOL SCATTERING COMPONENTS BY 

THE METHODS OF POLARIZATION 
SOUNDING 

 
Under the conditions of the real atmosphere light 

scattering is made up of two factors, namely, scattering 
by aerosols and air molecules. For this reason, before 
solving the inverse problems and drawing any 
conclusions about the physical parameters of the 
atmosphere it is first necessary to determine the 
contribution made by each of the indicated components 
in the optical signals to the scattering. This problem is 
especially important in the studying of the upper and 
middle atmosphere by optical methods. Within the 
framework of the theory of polarization sounding, which 
was presented above, it is not difficult to construct 
general functional equations for determining together 
the optical characteristics of two indicated components. 
Indeed, since now the overall light-scattering matrix 
ˆ ,D  which transforms the vector I(0) into I(s), is equal to 

the sum of two matrices, namely, the aerosol scattering 
matrix (a)D̂  and the molecular scattering matrix 

(M)ˆ ,D  by analogy to (4) we have 
 

 (20) 
 

The molecular scattering matrix (M)D̂  in (20) is 
represented in the form of the product of the volume 
coefficient (M)

sc  and the normalized matrix {Mij} .The 
structure of the latter matrix is close to that of the 
matrix (a)

ij{ },D  the difference being that in the matrix 

Mij M34 = M43 = 0. 
In the system (20) the functions (a)

11 ( )D   and 
(a)
12 ( ),D   and the quantity (M)

sc  are unknown. The 
values of Mij can be expressed simply in terms of 
trigonometric functions of the angle .  It is obvious 
that the system (20) is not determined and it cannot be 
made determined by choosing the polarization vector 

(0).C


 Introducing the optical operator W21 is the only 
method for completely determining the system (20) 
and properly formulating the inverse problem. Indeed, 
in the latter case the system (20) reduces to the system: 
 

 (21) 
 

 
 
This system assumes an especially simple form if we set 

(0)c 


 {1, 0, 1, 0}: 
 

 (22) 
 

From the system (22) we are required to find the 
function (a)

11 ( )D   and the constant (M)
sc .  At the same 

time it is obvious that formally the system of two 
functional equations must determine two unknown 
functions. For this reason it can be asserted that the 
system (22) contains more information than is required 
in the problem at hand in inverting (s)

1a  and (s)
2 .a  

Indeed, separating the unknowns in the system 
(22), we arrive at the two equations 
 

 (23) 
 

where 
 

 
 

and 
 

 (24) 
 

Equation (23), like also Eq. (7), is an integral 
equation of the second kind, and there is no need to 
discuss it in detail. From the viewpoint of information 
content Eq. (24) is more interesting. It is obvious that 
it determines some constant (M)

sc  in the case when the 

ratio (s) (s)
2 21 1 2 21 11( ) / )a W a M W M   does not depend 

on the scattering angle .  To satisfy this condition the  
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experimental data (s)
1a  and (s)

2a  must be mutually 
consistent and the a priori employed information 
presented here by the matrices (a)

ij{ }D  (also by the 

operators Wij) and {Mij} must be employed. Thus in the 
process of interpretation there arises the possibility of 
determining how well the a priori information employed 
corresponds to the real situation in the experiment. 

The two remaining equations, analogous to the 
system (20) and referring to the components (s)

3I  and 
(s)
4 ,I  can be employed to determine (or refine) the 

starting approximations m  and .m  Introducing the 
components of the polarization vector (s),C


 they can 

be written in the form 
 

 
 

 (25) 
 

 
 

 
 
The equations of the system (29) simplify appreciably, 
if the vector (0)c 


 {1, 0, 1, 0} is introduced, as done 

repeatedly above, and then all three operator 
equations, depending on the optical constants m  and 

,m  assume the form 
 

 (26) 
 

For  (M) (a)
sc sc ,n  i.e., in the case when the contribution 

of molecular scattering can be neglected the system 
(26) transforms into the system (18). The operator 
equations presented above solve completely the problem 
of separating the aerosol and molecular scattering 
components based on data from polarization sounding. 

In conclusion it should be noted that in the 
practice of atmospheric-optical studies the components 
of scattering are usually separated by a. simpler 
method, namely, by first evaluating data from the 
temperature and pressure profiles. Of course, this 

 requires appropriate measurements which, 
incidentally, cannot always give the required spatial 
resolution. The problem is that the theory studied 
aboved concerned local volumes of the atmosphere; it 
was assumed that the corresponding optical 
information is obtained with the help of polarization 
nephelometers (airborne optical laboratories10) or 
bistatic lidars.11 The indicated optical sounding 
systems make it possible to obtain large volumes of 
information with high spatial resolution. On the basis 
of the theory presented above we solved the problem of 
separating the scattering components by a purely 
optical method without the help of meteorological 
measurements and especially without the help of 
standard models of the molecular atmosphere. 
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