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A criterion is suggested for estimating the dimensions of the central isozone for the 
scheme of vertical viewing and results of these estimations are presented. Their 
dependence on the optical-geometric parameters of three types of vision systems is 
investigated. The calculations are performed in the single scattering approximation and 
(taking multiple scattering into account) using the Monte Carlo method. 

 
 

It is known that the brightness image of any 
object can be obtained by different methods. The most 
characteristic of these are the following1,2: 

a) the radiation brightness is recorded in the same 
fixed direction at different points of the plane in which 
the receiver is located (spatial distribution); 

b) the angular brightness distribution is recorded 
at one fixed point in space; 

c) the image is formed by a raster-type system in 
which angular scanning is carried out along one 
coordinate and the receiver is displaced along the 
other. 

In general, when there is a scattering medium 
between the object and the receiver, all three received 
images appear different. To restore the actual form of the 
object, it is necessary to eliminate distortions caused by 
the medium. This can be done within the framework of 
the linear systems approach if the point spread function 
(PSF) of the system or its optical transfer function are 
known. As is well-known, the image of the object in the 
theory of linear systems is written as 
 

 (1) 
 
where G(x, y) is the function that defines the object 
and h(x, y; x, y) is the PSF of the vision system. 

In the case of an isoplanar system,3,4 the infinite 
set of functions h(x, y; x, y) needed to retrieve the 
actual shape of the object can be restricted to those 
functions h(x, y; x’, y’) of the form 
 

 (2) 
 
This makes it considerably easier to restore the image. 
Strictly speaking, only the system that forms the 
image according to procedure "a" under conditions of 
a horizontally homogeneous medium has the property 
of isoplanarity. Nevertheless, in most applied 
problems of vision theory one can find ranges of the 
values of x and ó for procedures "b" and "c" within 
which relation (2) is satisfied with some prescribed 

accuracy. These ranges are conventionally called zones 
of isoplanatism. In this paper we suggest a criterion for 
estimating the dimensions of the central isozone for a 
scheme of vertical observation and describe the results 
of such estimations. 
 

CRITERION SELECTION 
 

It is clear that that part of the frame in which the 
brightness images obtained by procedures "a," "b," 
and "c’ coincide with a specified degree of accuracy 
should be taken as the zone of isoplanatism. 

Let us consider the image of the simplest object, 
i.e., a point source. From Eq. (1) and (2) it follows that 
 

 
 

 
 
This means that in isoplanar system "a" the image of 
the point is its own spread function. Therefore, to 
determine the zone of isoplanatism, it is sufficient to 
determine the region where the PSF coincides with the 
angular distribution of the radiation brightness of the 
point source with the prescribed degree of accuracy. 

Let us consider the vision system. A diagram of it 
is shown in Fig. 1. The diffuse point source (the object 
of observation) is assumed to be located at the origin of 
the XYZ coordinate system. The receiver is located at 
point A (0, 0, L). The plane-parallel, horizontally 
homogeneous, scattering medium is characterized by 
the profiles of the scattering s(z) and extinction t(z) 
coefficients and also by the scattering phase function 
g. Let us assume that the observation is vertical; 
therefore, the system has circular symmetry and 

h(x, y) = h(r), where 2 2.r x y   Let  be the 
angle between the direction of observation (in our case 
the 0Z axis) and the direction of the point source 
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FIG. 1. Geometric diagram of image formation in 
vision systems. 

 

We denote by ˆ( )h r  the angular brightness 
distribution at the point A. We define the degree of 

coincidence of h(r) and ˆ( )h r  as follows: 
 

 (3) 
 

The isoplanatism zone dimension R1 can be found from 
the condition 
 

 (4) 
 

In practice it is more convenient and pictorial to 
use the angular isoplanatism zone dimension 

R = arctg 1 .
R
L

 

The goal of our efforts was to try to define the 
dependence of R on the optical-geometric parameters 
of the vision system. 
 

CALCULATIONAL METHODS 
 

The functions h(r) and ˆ( )h r  were calculated in 
the single-scattering approximation (SSA) and by the 
Monte-Carlo method, which takes account of multiple 
scattering. To check the obtained results, a number of 
laboratory experiments were carried out.5 

Within the framework of SSA we obtain the 
following expressions for the unknown functions: 
 

 
 

 (5) 
 

 
 

 (6) 
 

where (Fig. 1) arccos ( )ˆ   is the angle between the 
radiation direction and the axis OZ; arccos ̂  is the 
angle between the beam direction from the source and 
the direction from the scattering point to the point A; 

1 and 2 are the optical distances from the source to 
the scattering point and from this point to the receiver; 
 is the coordinate along the line segment BA; ˆ( )s s  is 
the distance from the source to the scattering point. 
From among the various Monte-Carlo method 

algorithms one can use to calculate h(r) and ˆ( ),h r  we 
chose the algorithm of local counting on conjugate 
trajectories.6 The local estimate has the form7 

 

 
 

where i is the path number; k is the number of the 
scattering event;  is the probability of photon 
survival (we assume that (s) =  = const). 
 

 
 

FIG. 2. General for the functions (r). The 
medium is haze H; l = 500 mm.  = 3, t = 0.1 
(curve 1);  = 1, t = 0.5 (curve 2);  = 1, 
t = 0.9 (curve 3); 0 = 20%. 

 
In the first stage of the investigation we carried 

out a number of numerical experiments which 
simulated the observation conditions in the laboratory 
setup.5 The receiver is located at a distance 
L = 104 mm from the source. A planar scattering 
layer of geometric thickness l = 30, 500 mm is 
located between the source and the receiver. We 
specify the position of the layer along the observation 

path by the parameter 
2
l

t l L
   

 
 (l is the 

distance from the source to the lower boundary of the 
layer): 0.025  t  0.9. As the scattering medium we 
chose the haze-H model and the Ñ.1 cloud model at the 
wavelength  = 0.53 m. The characteristic 
parameters of these two models are 
H = gH(0)/gH()  143, H  27.7 (the asymmetry 
factor), C.1  4480, and C.1  28.4. The optical 
depth varied within the range 0.1    12. The 
scattering and extinction coefficients s and t were 
taken to be constant. Figure 2 shows some examples of 
the functions (r). The characteristic feature of these 
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functions is a pronounced nonmonotonicity in the 
majority of cases. Analysis of the mean values of the 

integrals h and ĥ  showed that this feature of the 
behavior of the functions (r) is due to the variation of 
contributions of different magnitudes entering into h 

and 1̂,h  as functions of r. Figure 3, which presents 
examples of the following functions: 
 

 
 

 
 

 
 

where 
 

 
 

 
 

 
 

 
 
(Fig. 1 illustrates this result), nonmonotonicity of the 
function (r) can result a nonuniqueness in the 
determination of magnitude of R. This depends on the 
choice the error level 0. The minimum error level 
which R can be calculated uniquely is determined by 
the parameters of the optical-geometric observation 
scheme. Using the criterion (3), (4) to estimate the size 
of the isoplanatism zone, among all the possible values 
of R corresponding to the prescribed error level 0, it 
is natural to choose the smallest.  

Figure 4 depicts the dependence R(t) for 
different values of . The difference in the qualitative 
form of the curves R(t) for   1.5 and  > 1.5 is of 
particular interest. The presence of a pronounced 
maximum is a typical feature of R(t) for  < 1.5. A 
physical explanation of the position of the maximum 
has not yet been found. However, it follows from an 
analysis of Eqs. (5) and (6) that its existence and 
coordinates for   1.5 can be due to the combined 
action of the geometric factor (/s2, 2ˆ/ˆ s ), and the 
scattering phase function. It makes sense, however, 
that the maximum of the dependence R(t) lies in the 
range of small values of t. When  changes within the 
limits 1.5 <  12, variations in the parameter f do 
not lead to substantial changes in the dimension R. A 
small increase in R is observed as t  0 and t  1. 
Moreover, 

t 1
lim ( , ) const.R t

   
 

 
 

FIG. 3. Variation of the character of the 
interaction of various quantities that enter into h1 

and 1̂.h  The medium is haze H; l = 500 mm; 

 = 1; t = 0.05; 0 = 20%. 
 

 

 
 

FIG. 4. The dependence R(t) for different values 
of . The medium, is: haze H (a); cloud C.1 (b); 
l = 500 mm; 0 = 20%;  = 12 (curve 1);  = 6 
(curve 2);  = 3 (curve 3);  = 1 (curve 4); 
 = 1.5 (curve 5). 
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The functions R() (Fig. 5) for different  values 
of t are nonmonotonic in the range   1.5, where the 

dependence of the functions h(r) and ˆ( )h r  on the 
scattering phase function is the strongest. As  
increases, the tendency of the value of R to decrease 
becomes evident. 
 

 
 

FIG. 5. The dependence R() for different 
values of t. The medium is haze H; l = 500 mm; 
0 = 20%;  = 0.05 (curve 1);  = 0.1 
(curve 2);  = 0.2 (curve 3);  = 0.9 (curve 4). 

 

One of the factors substantially affecting the 
dimension of the isoplanatism zone is the scattering 
phase function. The dependence of R on g can be' 
estimated from Figs. 4a and b. As the elongateness of 
the scattering phase function is varied, the above-noted 
regularities in the behavior of R(t, ), as a whole, 
remain unchanged. An increase in the phase function 
parameters  and  results, as could be expected, in a 
decrease in R. It is most evident in the region of those 
values of t where the maximum of R(t) is attained. 

Both the growth in the optical depth and increase 
in t (t  1) lead to a convergence of the dimensions of 
the isoplanatism zones for media with different 
elongateness of the scattering phase function. 

In Refs. 8 and 9 it is noted that a variation in the 
geometric depth of the scattering layer l does not 

substantially affect the functions h(r) and ˆ( )h r  if 
lg(l1/l2)  2. A similar conclusion can be also 
drawn in relation to the influence of l on the 
isoplanatism zone dimension. 

Finally, an increase in the prescribed error level 0 
leads to an obvious increase in the value of R with the 
character of the above regularities remaining 
practically unchanged. 

As obvious as it may be, it is nevertheless important 
to note that the considered criterion (3), (4) is, as the 
analysis indicates, very sensitive to variations of the 
optical-geometric parameters. An integral criterion 

appears to be slightly more stable in this respect. 
According to such a criterion the isoplanatism zone 
dimension i( )R R

   is determined from the condition 
 

 (7) 
 
where 
 

 
 

 
a 

 
b 

 

FIG. 6. The dependence ( )R t
  for different 

values of . The medium is: à) haze H; b) Ñ.1 
cloud; l = 500 mm.  = 12 (curve 1);  = 6 
(curve 2);  = 3 (curve 3);  = 1 (curve 4); 
 = 1.5 (curve 5); 0 = 20%. In the case of cloud 
C.1 and  = 1  = 5%. 

 

An example of the dependences ( , )R t   is shown 

in Fig. 6. In general, they exhibit the same regularities 
as were noted in the behavior of R(t, ). The 
differences between R(t, ) and ( , )R t   have to do 

with the influence of the scattering phase function. 
That is, the increase in the elongateness of the 
scattering phase function results (in this case) in an 
increase in the dimension R

  at least for   6. This is 
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probably due to the fact that in the case of a more 
elongate scattering phase function up to certain values 

of  the contributions of the integrands h(r) and ˆ( )h r  
to (R) and ( )ˆ R  are most significant when these 
functions differ only slightly from one another. For 
 > 6, strong multiple scattering effects considerably 
extend the range [0, R] over which the integrals are 
summed. Therefore, in the case of a less elongate 
scattering phase function the isoplanatism zone 
dimension turns out to be larger. 

The second stage of our investigations included 
numerical experiments for models of the actual 
atmosphere. A mean-cyclic model of the continental 
aerosol at the wavelength  = 0.53 m was taken as 
the starting point.10 Calculations were also carried out 
for the case of the presence in the atmosphere of a solid 
cloud cover l = 300 m with the extinction 
coefficient t  17 km–1. Its height above the Earth’s 
surface was taken to be l = 0.25, 12, and 20 km. 
Table I displays calculated results for the angular 
dimension of the central isozone R in the atmosphere 
for the case of vertical observation. 
 

TABLE I. 
 

 
 

It follows from the data in Table I that for 
observation conditions in the model that are close to 
actual ones, the dimension of the isoplanatism zone 
decreases (compared with those considered above) 
even for a cloudless atmosphere. The presence of a 
cloud layer can lead to different results: for small 
values of l, the value of R becomes smaller than the 
value that it has in the case of a cloudless atmosphere. 
As l increases, the value of R grows. But in every one 
of the above-mentioned cases R does not exceed 
10-12 (for criterion (7) it is 20) even for an error 
level of 50%. 

In conclusion, we emphasize that, the isoplanarity 
property is not the same as that of "foreshortened 
invariance,"1,2 for, as shown in Ref. 2, when the 
"foreshortened invariance" condition is violated, 
isoplanarity remains. 

Thus, we can draw the following conclusions: 

1. According to the criteria considered above, the 
isoplanatism zone dimension is a complex multivalued 
function of the optical-geometric parameters of the 
particular vision system in question (in particular, 
optical depth, the vertical profiles of the coefficients s 
and t, and the scattering phase function g).2. Using 
the Monte Carlo method, quantitative estimates of the 
central isozone dimension were obtained for concrete 
cases. However, the complex character of the 
dependences R(t, , g) does not allow us to 
extrapolate the obtained estimates with any degree of 
confidence to other observation conditions for small 
optical depths (  1.5) and cases in which the medium 
contains layers with higher turbidity characterized by 
the parameter t in the limit t  0. 

3. These facts should be taken into 
consideration when using one point spread function 
to restore the images obtained with the help of 
procedures "b" and "c". 
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