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The effect of turbulence on the distribution of the average intensity of a partially 
coherent laser beam propagating in the atmosphere under conditions of thermal blooming 
along vertical and inclined paths is studied. It is shown that in calculations of the thermal 
distortions of laser beams with visible and IR wavelengths in the atmospheric turbulence 
must be taken into account for many situations of practical importance. Formulas that 
permit finding from the values of a collection of functions at the boundary of the effective 
layer of the atmosphere xe the dimensions and the displacement of a beam on any path 
x > xe without direct calculation of the average intensity distribution are derived.  

 
 

In theoretical studies of the thermal blooming of 
beams propagating on vertical paths the effect of the 
atmospheric turbulence on the distribution of the 
average intensity in the plane of observation was 
neglected.2–4 However it may be necessary to take 
atmospheric turbulence into account in the analysis of 
the propagation of a beam on long inclined paths for 
short-wavelength lasers and in the case of intense 
turbulent pulsations of the index of refraction of air.1 

In this paper the average intensity of a partially 
coherent laser beam propagating in a turbulent 
atmosphere along vertical and inclined paths under 
conditions of thermal blooming is studied based on a 
numerical solution of the equation for the mutual 
coherence function of the field of the wave. The effect 
of turbulence on the characteristics of the beam under 
different conditions of propagation is analyzed. 

We shall employ the following approach to 
calculate the average intensity 


( , )I x  of a beam 

under conditions of steady blooming. The entire path x 
is subdivided into N layers. In the planes containing 
the front boundary of each layer, the attenuation of 
the field of the wave Uj(x, ), occurring owing to 
absorption, and the turbulent distortions of the field 
are taken into account in the phase-screen 
approximation. Under the assumptions that the field 
along the propagation path is 6-correlated and the 
turbulent pulsations of the refractive index have a 
Kolmogorov spectrum5 the following equations9 can be 
derived for the coherence function 
 

 
 
from the parabolic equation for the field of the wave1 
after the induced temperature T(x, ) is replaced in it 
by the average value ( , ) :T x  

 

 
 

 
 

 (1) 
 
with the boundary condition at the interface between 
the two layers 
 

 
 

 (2) 
 
where k = 2/;  is the wavelength; /T is the 
derivative of the dielectric constant of air with respect 
to the temperature; a is the absorption coefficient; 

2
nC  is the structure constant of the turbulent 

pulsations of the refractive index; x  [xj–1, xj]; 
j = 1, 2, , N; x0 = 0; xN = x. The quadratic 
approximation6 was employed in the second 
exponential in Eq. (2). 

According to the results of Ref. 14 the 
fluctuations of the induced temperature  T T T  
can be neglected in deriving Eq. (1) in the calculation 
of the average intensity of the beam, if the condition 
for fluctuations of the intensity owing to turbulent 
pulsations of the refractive index to be weak is 
satisfied in the induced thermal lens, formed primarily 
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in the bottom 1–3 km of the troposphere,1 This 
situation practically always arises on vertical 
propagation paths. 

In the case of a partially coherent gaussian beam 
we shall give the boundary conditions for the first 
layer in Eq. (1) in the form7 

 

 (3) 
 

where I0 is the maximum value of the intensity; c is 
the coherence radius; and, a0 is the radius of the beam. 

Retaining only the linear term in the expansion of 
the temperature difference in Eq. (1) in a Taylor series 
in 


 and Fourier transforming Eq. (1) 

 

 (4) 
 

we arrive at the equation of radiation transfer,8 after 
solving which j can be represented in dimensionless 
variables9 as 
 

 
 

 (5) 
 

where 

R  satisfied the equation 

 

 
 

 (6) 
 

with the boundary conditions 
 

j( ) ,R x R  


  



j( ) ,R x

x
 x  [xj-1, xj]. 

In Eq. (5) p = Ld/Rnl, where 
Ld = k 2 2 2 1/2

0 0 k/ (1 / )a a a  is the effective diffraction 
length; 
 

 (7) 
 

is the effective thermal blooming length in the plane 
x = 0; (0) and Cp are the density and heat capacity 

of air, respectively;   


0V {Vz(0); Vy(0)} is the 
component of the wind velocity vector, 
perpendicular to the axis of propagation x, in the 
plane of the source of radiation. 

Since 
  


:

a

( ) ( )
,

( )
x x
T T x

 where Ta is the absolute 

temperature of the air, the function v(x) in Eq. (6) 
will be determined as follows:3 
 

 (8) 
 

The average intensity was calculated using the 
numerical scheme presented in Ref. 9. The models of 
altitude profiles of the meteorological and optical 
parameters of the atmosphere for middle latitudes were 
employed.10–12 The turbulent fluctuations of the index 
of refraction were taken into account based on the 
results presented in Ref. 13, where models of the 
altitude behavior of 2

n ( ),C x  which correspond to the 

best conditions for propagation of light when 2
nC  

assumes its minimum values and the worst conditions 
when 2

nC  assumes its maximum values, are presented. 

A third profile 2
n ( )C x  corresponding to the geometric 

average of the first two profiles is constructed for the 
average conditions.13 

The absorption coefficient a(x), the temperature 
Ta(x), and the transverse components of the wind 
velocity Vz(x) and Vy(x) in Eq. (8) are presented 
in a coordinate system (tied to the beam) whose origin 
lies at the source of radiation. We denote the 
absorption coefficient by 0

a,  the absolute 

temperature of the air by 0
a ,T  and the components of 

the wind velocity along the z axis (west-east direction) 
and along the ó axis (south-north direction), 
represented in a coordinate system whose origin lies on 
the earth’s surface, by V0z and V0y. 

It is not difficult to obtain the following 
relationships: 
 

 (9) 
 

 (10) 
 

– 
 

 (11) 
 

+ 
 

 (12) 
 

where H0 is the altitude of the radiation source above 
the earth’s surface;  is the zenith angle; and, x is the 
normalized coordinate. 

From Eqs. (11) send (12) one can see that the 
transverse components of the wind velocity Vz  
and Vy depend not only on  but also on the angle 
 (see Fig. 1). 
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It follows from Eqs. (7), (11), and (12) that the 
effective thermal blooming length in the plane of the 
source depends on the altitude H0 and the angles  and 
. We denote by (, ) the ratio of Rnl/=0 to Rnl. Then 
 

  
 

 (13) 
 

 
 
FIG. 1. Diagram of the propagation of a laser 
beam in the atmosphere. 

 

The quantity (, ) assumes its maximal value 
  1/ cos  (for which  the greatest nonlinear 
distortions of the beam occur) when the angle  = 
arctg [V0y(H0)/V0z(H0)] = 1, and its minimum 
value ( = 1) when  = 1 + /2 = 2. Therefore, 
as the angle  varies, for example, from 0 to 60° the 
length Rnl decreases by a factor of 2  for the case 
 = 1 (the thermal distortions of the beam increase 
by approximately the same factor) and remains 
constant for the case  = 2. 

Figures 2 and 3 show the results of the 
calculation of the distribution of the average 
intensity, normalized to the maximum value <I>max, 
of a beam propagating along a vertical path 
x = 20 km for large nonlinearity parameters 
(P2 . 1) and different turbulent conditions, 
obtained for the summer model of the absorption 
coefficient.11 The calculation was performed for two 
wavelengths (10.6 and 1.064 m) in cases when the 

nonlinearity length Rnl had the same value 
(Rnl = 7 km) and different values (Rnl = 7 km for 
10.6 m and Rnl = 22 km for 1.064 m) but the 
radiation power in the plane of the source was the same. 
This difference is determined by the fact that the energy 
absorption coefficients of the beam at these wavelengths 
differ approximately by an order of magnitude.11,12 
 

 
 

FIG. 2. The distribution of the average intensity 
of a laser beam with the wavelength 10.6 m in 
the plane of the radiation (a) and at a distance 
x = 20 km for the best (b), average (c), and 
worst (d) turbulent conditions of propagation of 
light for Rnl = 7 km. 

 

 
 

FIG. 3. The distribution of the average intensity 
of a laser beam with the wavelength 10.6 m for 
Rnl = 7 km and the best (a), average (b), and 
worst (c) conditions and for Rnl = 22 km and the 
worst conditions (d). 
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The calculations showed that for the best 
conditions of propagation of light (Figs. 2b and 3a) the 
turbulence has virtually no effect on the distribution of 
the average intensity of the beam. As one can see from 
Figs. 2b and 3a, the thermal distortions for the same 
values of Rnl for beams with different wavelengths are 
virtually identical. If Rnl = 22 km, then, conversely, 
the thermal distortions on the 20 km path can be 
neglected. Turbulence has an appreciable effect on the 
distribution of the average intensity only under the 
worst conditions (Figs. 2d, 3c, and 3d). As expected, the 
turbulent spreading of the beam is stronger for a laser at 
the wavelength 1.064 m (compare Figs. 2d and 3c). 

We analyzed the average intensity of beams for 
extended paths x p 20 km when a large portion of 
the path passes outside the distorting layer of the 
atmosphere. We shall determine the effective 
thickness of the distorting layer xe, equal to the 
distance along the direction of propagation at which 
the values of the absorption coefficient and (or) the 
structure constant of the refractive, index decrease to 
10–3 of the maximum values in the plane x = 0. In 
particular, for a vertical path and a wavelength of 
10.6 m the absorption coefficient a drops by three 
orders of magnitude at a distance x = xe = 60 km in 
the case of the summer model. At the same time, for 
 = 1.064 m the ratio a(x)/(0) is equal to10–3 
already at altitudes x  10 km,12 while the values of 

2
nC (x)/ 2

nC (0) have not yet dropped to this level. In 

this case xe was set equal to 20 km, where 2
nC (x) also 

already satisfies the imposed requirement. 
For x > xe it can be assumed that the beam 

propagates in a homogeneous medium. Then the 
following relations can be easily derived for the 
displacement vector of the energy center of gravity of 

the beam 


c ( )R x  and the squared effective 

dimensionless radius of the beam g2(x): 
 

 (14) 
 

 (15) 
 

where 
 

 (16) 
 

 
 

 (17) 
 

 
 

(18) 
 

 
 

 
 

The values of Âz, Ây, Âzy, Dz, and Dy are 
calculated numerically when the coherence function j 
is calculated in the plane xe.

9 Thus after the 
coefficients 


,  , and  are determined from the 

formulas (16)—(18) and substituted into Eqs. (14) 
and (15) the width and displacement of the beam on 
any path x > xe can be found. 
 

 
 
FIG. 4. The dimensionless effective betrn radius g 
Csolid and dashed lines1 and the normalized 
modulus of the displacement vector of the beam 




0/R a  (dot-dashed curve) as a function of the 

path length x for H0 = 0 km and Rnl = 7 km (solid 
and dot-dashed lines) and Rnl = 22 km  (dashed 
lines) for the best (1), average (2), and worst (3) 
turbulent conditions for propagation of light. 

 
It follows from the result of the calculations based 

on the formula (15) that the spreading of the 10.6 m 
beam on extended paths with Rnl  7 km in the case 
of the best and average conditions of propagation 
(relative to 2

nC ) is determined primarily by the 
thermal distortions, and for the worst conditions 
nonlinearity and turbulence make comparable 
contributions to the spreading of the beam. As the 
wavelength decreases ( = 1.064 m) the effect of 
turbulence increases and for Rnl = 22 km the effective 
radius of the beam g(x) increases practically 
completely owing to turbulence. Nonlinearity and 
turbulence make an almost additive contribution to 
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the squared effective radius of the beam g2  2 2
tnl ,g g  

where 2
nlg  is the radius of the beam in the absence of 

 

turbulent fluctuations of the refractive index of air and 
2
tg  is the turbulent correction to the squared beam 

radius for a linear medium,6 proportional to –2/5. 
The approximation g2  2 2

tnlg g  will also be 
valid for the best turbulent conditions of propagation 
of light for any values of Rnl. The calculations show, 
however, that for x p 20 km and Rnl = 7 km this 
approximation underestimates the value of g2(x) and 
the relative error S = [g2/( 2 2

tnlg g ) – 1]  100% is 

equal to  3% for the average: conditions and  27% 
for the worst conditions. The quantity S can 
significantly exceed these values for shorter nonlinearity 
lengths Rnl and on inclined propagation paths. 

Figure 4 shows the integral parameters of the 
radiation beam with  = 1.064 as a function of x in the 
case of vertical propagation. One can see that for the 
worst turbulent conditions of propagation of light and 
Rnl = 7 km at an altitude of 100 km the effective 
radius of the beam increases by almost a factor of five. As 
one can see by comparing the continuous curves 1 and 3, 
neglecting the turbulent pulsations of the refractive 
index in this case would result in an underestimation of 
this quantity by approximately a factor of two. 

Thus we have shown in this paper that under the 
worst conditions of propagation of light the effect of 
turbulence on the distribution of the average intensity 
of the beam must be taken into account even for 
vertical propagation paths and the infrared region of 
the spectrum. The nonlinearity and turbulence make a 
nonadditive contribution to the spreading of the beam. 
As the wavelength of the laser radiation decreases the 
effective radius of the beam can increase significantly 
owing to turbulence on vertical paths not only for the 
worst but also for the average conditions of 
propagation of light. For this reason, in order to 
describe correctly the thermal distortions of laser 
beams with visible and IR wavelength, in the 
atmosphere the effect of turbulence must be taken into 
account in many practically important situations. If 
the numerical values of a definite collection of 
functions at the boundary of the effective layer of the 
atmosphere xe are known, the formulas (14)–(18) 
permit determining the dimensions and displacement 
of a beam on any path x > xe without directly 
calculating the average intensity distribution. 
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