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The inverse problem on simultaneous determination of microstructure characteristics and the 

refractive index of atmospheric aerosol from simultaneous measurements of the spectral transmission 
and solar aureole brightness is considered. To describe microstructure of the medium, integral functions 
of the particle size distribution were used. The similitude relationships have been derived, which the 
microstructure characteristics of scattering media having equivalent spectral extinction do obey. The 
algorithm of solving the inverse problem, based on minimization of the discrepancy between the 
measured scattering phase function and that calculated from the microstructure, retrieved from the 
inversion of the light extinction coefficient, is verified and tested in numerical experiments. The 
estimates of the error of determination of the real and imaginary parts of the refractive index are 
calculated, which do not exceed 0.05 and 0.03, respectively. 

 
Introduction 

 
Determination of the aerosol disperse composition 

by optical methods requires, as a rule, that the 
refractive index of aerosol matter is known. Since the 
refractive index of the aerosol matter affects its 
scattering and absorption properties, it is natural to try 

to construct methods for its determination based on 
data of optical measurements. The data on the aerosol 
refractive index have independent interest, because 

these provide for information about its nature and 
physicochemical properties. 

The purpose of this paper was to develop a 

technique for joint determination of the aerosol refractive 

index and disperse composition from measurement data 
on the spectral transmission and brightness of solar 
aureole using few a priori data on the solution sought. 
This paper continues the investigations,1,2 where it 
was proposed to use the integral aerosol particle size 

distributions for microphysical interpretation of the 

optical measurements carried out by means of multi-
wavelength sun photometers. In solving the above-
stated problem, the approach was applied that earlier 
has been developed for inverting the angular 

measurements of the elements of the scattering phase 
matrix3 based on the method of regularization for 
differential aerosol distributions. The advantage of 
using the integral aerosol distributions is the fact that 
in this case no restrictions are to be imposed on the 

smoothness of the distributions and no determination 

of the regularization parameter is needed. It is 

especially important in solving the inverse problems 
of aerosol light scattering using an approximately set 
operator, in which the approximate setting of the 
operator is caused by the errors in the refractive 
index of the particulate matter chosen. Another one 
advantage of the method proposed is the possibility 

of using it in automation of the experimental data 
interpretation. 

 

1. Peculiarities of interrelations 
between optical and microphysical 
properties of aerosol in the inverse 

problems of sun photometry 
 

Let us consider the inverse problem on determination 

of the aerosol disperse composition from measurement 
data on the spectral dependence of the aerosol 
extinction coefficient 

 ε λ = λ∫
0

( ) ( , ) ( )d ,
R

K r s r r  (1) 

where K(λ, r) is the extinction efficiency factor 
depending on the complex refractive index m = n – iκ, 
which can be unknown, s(r) = πr2n(r), n(r) is the size 
distribution function of the particle number density. 
To understand specific features of such a problem,  
it is convenient to use the Hulst approximation4  
for description of the efficiency factor K(λ, r), which 
was obtained for “soft” particles with the refractive  
index close to unity, | m – 1| << 1 at kr >> 1, k = 2π/λ 

(anomalous diffraction). In reality, this approximation 
has wider boundaries of applicability and is quite 
suitable for describing the optical properties of aerosol 
particles in the atmosphere. According to Ref. 4, the 
factor K(λ, r, m) = K(ρ, β) is the function of two 
generalized parameters: ρ = 2kr (n – 1) and β = κ/(n – 1). 
The parameter ρ characterizes the phase shift of the 
light wave passed through a spherical particle along 
its diameter. 

For simplicity, let us consider first the case of 
non-absorbing particles (κ = 0) with real part of the 
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refractive index n, which does not depend on the 
wavelength of radiation. Taking into account this 
assumption, let us write Eq. (1) in the following form 
 

 − = ε λ∫
0

[2 ( 1)] ( )d ( ).
R

K kr n s r r  (2) 

Dependence of the factor K(ρ) on the particle 
size r and the refractive index n presented by the 
unified generalized parameter ρ = 2kr(n – 1) makes it 
possible to determine the conditions, under which the 
spectral behavior of the extinction coefficient ε(λ) of 
two ensembles of particles with different refractive 
index and different disperse composition, is the same. 
  For example, let an aerosol medium, the optical-
microphysical properties of which are characterized 
by the set {m*, s*(r), ε*(λ)} satisfy Eq. (2). Then it 
follows from Eq. (2) that the equality ε(λ) = ε*(λ) is 
valid for another medium with microphysical 
characteristics {m, s(r)}, if the distributions s(r) and 
s*(r) have been related by the formula 

 s(r) = ηs*(ηr), (3) 

where 

 η = (n – 1)/(n* – 1). (4) 

Thus, two different ensembles of particles with 
the characteristics {m, s(r)} and {m*, s*(r)} related by 
the formulas (3) and (4) have the same spectral 
dependence of the extinction coefficient, and can be 
considered from this standpoint as optically equivalent. 
Obviously, one can find infinite number of ensembles 
of particles optically equivalent in this sense. 

In making generalization to the case of absorbing 
particles, for keeping optical equivalence, the change 
of the imaginary part of the refractive index should 
correlate with the change of the real part by the rule 
 

 κ = ηκ*. (5) 

From the standpoint of solving the inverse 

problem, the consequence of above said is the 

impossibility, in principle, of unambiguously determining 
the distribution s(r) and the refractive index m only 
from the measured parameter ε(λ). If a solution of such 
an inverse problem exists, it is not unique. 

The transformation formula for the integral 
aerosol distribution 

 
0

( ) ( )d
r

S r s r r′ ′= ∫  

has the form 

 S(r) = S*(ηr). (6) 

Formulas (3) and (6) describe transformations of 
the “stretching-compression” type and give simple 
explanation of the peculiarities of the transformation 
of the retrieved aerosol distributions at variations in 
the a priori selected refractive index, which were 
observed in numerical experiments.1,2 

In particular, it follows from Eq. (6) that the 
value S = S(R) = S*(ηR) does not depend on the 
refractive index. So, in inverting the measured ε(λ) 
values, selection of the refractive index does not 
affect the value of the retrieved total geometric cross 
section of particles. Based on Eq. (6) and the property 
of monotonicity of the function S(r) at 0 ≤ r ≤ R, one 
can also write the inequality 

 S(r) ≤ S*(r), n < n*, (7) 

which changes sign at n > n*. 
If one uses the size distribution of particle number 

density n(r), instead of s(r), for description of the 
disperse composition of optically equivalent media, 
then, analogously to Eq. (3), one can obtain the 
following relationship: 

 n(r) = η3n*(ηr), (8) 

from which, in particular, we obtain for the total 
number density 

 N = η2N*. (9) 

It is seen from Eq. (9) that, on the contrary to 
the geometric cross section of particles S, the number 
concentration N of optically equivalent media changes 
depending on the ratio between real parts of the 
refractive index n and n* proportionally to the square 
of the η value. 

Finally, let us analyze the particle volume size 
distribution function v(r) = (4/3)rs(r). Similarly to the 

previous cases, we have the following transformation 
formula for this function: 

 v(r) = v*(ηr), (10) 

and for the volume concentration 

 V = V*/η. (11) 

It follows from Eq. (10) that “stretching” of the 
particle volume size distribution function v(r) along 
the positive direction of the abscissa axis occurs with 
decreasing the refractive index (n < n*). It leads to 
increase of the area under the curve v(r) proportionally 
to (1/η) value that agrees with Eq. (11), which 
determines the change of the total volume of particles. 
In contrast to the number density of particles N 

[Eq. (9)], which decreases with the decreasing refractive 
index, the total volume concentration V increases. 
  Taking into account the relation between the 
volume concentration V with the total geometric 
cross section S: 

 s(4/3) ,V r S=  (12) 

where sr  is the mean particle radius over the s(r) 
distribution, and, taking into account the revealed 
constancy of the value S for the optically equivalent 
media, one can write the following relationship: 

 *
s s / .r r= η  (13) 

It follows from Eq. (13) that, as in the case with 
the volume concentration, the decrease of the refractive 
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index of the particulate matter (η < 1) causes 
redistribution of particles over size so that the mean 
particle radius sr  increases. 

Thus, we have revealed that spectral measurements 
of the extinction coefficient ε(λ) contain insufficient 
information for simultaneous determination of the 
aerosol disperse composition and the refractive index, 
that leads to ambiguity of the solution. We have 

derived the similitude relationships, to which the 

microstructure characteristics of scattering media that 
have same spectral extinction at variations of the 
aerosol refractive index should satisfy. 

Let us now address the question on what angular 
measurements of the solar aureole brightness can add 
under such conditions. According to Eq. (13), the mean 

particle radius sr  in the reconstructed distributions 
depends on the refractive index selected. However, it 
is known that forward peakedness of the scattering 
phase function increases with the increase of the 
mean particle size. This gives grounds for expecting 
that the discrepancy between the measured scattering 
phase function and that calculated from the 

microstructure reconstructed by inverting the function 
ε(λ) increases at deviation of the a priori set refractive 
index n from its true value n*. In this case one can 
obtain the estimate of the refractive index n* by 
minimizing the aforementioned discrepancy. 

For example, let us consider reconstruction of the 

aureole scattering phase function in the Fraunhofer 
diffraction approximation 

 µµ θ = θ∫
0

( ) ( , ) ( )d ,
R

K r s r r  (14) 

where 

 
2

(D) 11 ( sin )
( , ) ( , )

sin
J kr

K r x rµ
θ θ = θ =  π θ 

 (15) 

is the normalized scattering phase function of an 
individual particle of the radius r; J1(.) is the Bessel 
function of the first kind. 

In this approximation, the scattering phase 
function µ(θ) does not depend on the refractive index 
of the particulate matter. This is true, if the particle 
size has not been related with their refractive index 
by a functional relation. However, if the function 
s(r) obtained by inverting the spectral dependence 
ε(λ) at some value n has been taken as the aerosol 
distribution in the integrand of expression (14), one 
can show, based on Eq. (3), that 

 µ(θ) = Îøèáêà! µ*(θ/η), (16) 

where the scattering phase functions µ(θ) and µ*(θ) 
correspond to the distributions s(r) and s*(r). 
Equation (16) describes the changes in the scattering 
phase function reconstructed depending on the 

deviation of the refractive index n selected from its 
true value n*. It follows from Eq. (16) that asymmetry 
of the scattering phase function µ(θ) monotonically 
increases with the decreasing refractive index n 

together with the increase of the discrepancy between 
the functions µ(θ) and µ*(θ). In particular, the ratio 
 

 * 2

(0) 1
(0)

µ =
µ η

 (17) 

at the point θ = 0 increases with decreasing η and, 
hence, with decreasing n. Due to continuity of the 
function µ(θ), the increase of its forward peakedness 
should occur in some angular range 0 .≤ θ < θ  One 
can consider Eqs. (16) and (17) as equations for 
determining the true value of the refractive index n* 
from measured scattering phase function. 

The problem of determination of n* is solved 
especially simply in the case of quite small scattering 
angles θ, if one can use the following quadric 
approximation for the scattering phase function µ(θ) 
[Eq. (14)] with the kernel Kµ(θ, r) [Eq. (15)] 

 µ(θ) = µ(0) – αθ2. (18) 

In this case the value x = η2 can be determined 
from solution of the quadric equation for a specified 
scattering angle θ: 

 2 2 *( ) (0) ( ) 0.x xαθ − µ + µ θ =  (19) 

One can obtain another interesting relationship 
in the frameworks of the quadric approximation, by 
finding the point where θ = θ, i.e., the cross point of 
the curves µ(θ) and µ*(θ). It is easy to show that its 
position depends on the value η2 according to the 
formula 

 2
2

(0) 1
.

1
µθ =

α + η
 (20) 

The value η2 can be determined from the value of the 
function µ(θ) at the point θ : 

 
2

2( ) (0) .
1

ηµ θ = µ
+ η

 (21) 

This case only illustrates the extreme situation 
when the scattering phase function x(D)(θ, r) is 
independent of the refractive index n.  

Another one characteristic case follows from the 
geometric optics approximation. In this case, as 

known,5 the shape of the scattering phase function, 
on the contrary, does not depend on the particle size 
(if the absorption of light inside a particle is neglected) 
and is determined only by the refractive index. 
As is seen from the general formulas of geometric 
optics,5 decrease of the refractive index in this case 
also leads to an increase in the asymmetry of the 
scattering phase function. An analogy is seen here 
with the effect of the refractive index of a lens on 
the structure of the light beam passing through it. 
  In the general case, when the kernel Kµ(θ, r) in 
Eq. (14) has been determined by formulas of the Mie 
theory,4–7 the dependence of the scattering phase 
function on the refractive index of the particulate 
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matter can be calculated. For example, the behavior 
of the scattering phase functions at the wavelength 
λ = 0.31 µm for the models of submicron haze2 with 
the parameter p = 0 is shown in Fig. 1. The meaning 
of this parameter will be explained below. 
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Fig. 1. The scattering phase function for the model of 
microstructure with the parameter p = 0; calculated data for 
the values of the refractive index n = 1.45, 1.35, and 1.55 
at the same disperse composition (1, 2, 2′); calculated data 
for the extinction-equivalent distributions according to 
Eq. (3) at the exact value nµ = 1.45 (3, 3′); total change  
of µ(θ) at nµ = n = 1.35 and 1.55 (4, 4′); data calculated  
at nµ = 1.45; κµ = 0.05 (5). 

 

The scattering phase function µ*(θ) (curve 1) 
corresponds to the aerosol model s*(r) of the type 
“haze H”6 with the refractive index nµ = 1.45. The 
index µ at the refractive index means that the n value 
was used in calculation of the kernel Kµ(θ, r). The 
imaginary part of the refractive index was assumed 
equal to zero. Curves 2 and 2′ were calculated for the 
same model, but with other values of the refractive 

index, namely nµ = 1.35 and 1.55. It is seen from the 
data presented that the decrease of the refractive index 
causes monotonic increase of the scattering phase 
function in the aureole, i.e., the change has the same 
sign as in calculations using the geometric optics 
approximation. 

Transformation of the particle size distribution 
s(r) by Eqs. (3) and (4) coordinated with the change 
of the refractive index in inversion of the spectral 
dependence ε(λ) causes additional transformation of 
the scattering phase function µ(θ).14

 Such a 

transformation at the exact value nµ = n* = 1.45 
yields µ(θ) functions shown in Fig. 1 by curves 3 
(n = 1.35) and 3′ (n = 1.55). Comparison of the curves 
1, 3, and 3′ shows an increase of the asymmetry of 
the scattering phase function occurring at decrease of 
the refractive index that agrees with the simultaneous 
increase of the mean particle radius sr  according to 
Eq. (13). 

It is important to emphasize that simultaneous 
effect of the refractive index in Eq. (14) on the 
kernel Kµ(θ, r) and the particle size distribution s(r) 
according to Eqs. (3) and (4) causes the change of 

the scattering phase function µ(θ) of the same sign, 
which are then summed. Curves 4 and 4′ in Fig. 1 give 
the idea of the total change of the scattering phase 
function under the effect of the aforementioned factors 
in the case of decreasing (nµ = n = 1.35) and increasing 

(nµ = n = 1.55) refractive index, respectively. 
The effect of the imaginary part of the refractive 

index on the behavior of the aureole scattering phase 
function is illustrated by the curve 5 in Fig. 1 obtained 
at the exact values s*(r), nµ = n*, and κµ = 0.05. It 
is seen that absorption of light leads to a systematic 
shift of the µ(θ) function. The same shift is observed 
at increase of n (compare with the curve 2′). This can 
be the reason of ambiguity in interpretation of the 
experimental data. So, for final estimation of the 
efficiency of determination of microstructure and 
refractive index from the measured parameters ε(λ) and 
µ(θ) it is necessary to carry out numerical experiments 
on solving the inverse problem. 

The regularities and tendencies observed in Fig. 1 
are quite general and are reproduced for a wide set of 
aerosol models. To confirm this fact, the results 

obtained in the case of the model medium formed by 
two particle fractions, fine (f) and coarse (c), are 
shown in Fig. 2. 
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Fig. 2. The scattering phase function for the model of 
microstructure with the parameter p = 0.2; calculated data 
for the values of the refractive index n = 1.45, 1.35, and 
1.55 at the same disperse composition (1, 2, 2′); data 
calculated for the extinction-equivalent distributions 
according to Eq. (3) at the exact value nµ = 1.45 (3, 3′); 
total change of µ(θ) at nµ = n = 1.35 and 1.55 (4, 4′). 

 
The ratio between them can be regulated by 

means of the parameter p, 0 ≤ ð ≤ 1, which determines 
the relative contribution of the coarse aerosol fraction 
to the total extinction coefficient ε(λ) at the 
wavelength λ = 0.55 µm.2 

 

2. Algorithm of solving  
the inverse problem 

 
Based on the results obtained in the previous 

section, one can propose the following algorithm for 

simultaneous determination of the aerosol microstructure 
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and the refractive index from simultaneous measurements 
of the aerosol optical thickness and solar aureole 
brightness. 

To describe the disperse composition of aerosol, 
let us use, as in Refs. 1 and 2, the integral distribution 
S(r). Then, for the set of aerosol optical characteristics 
measured one can write the following system of 
operator equations: 

 QαS = α, α = {ε(λ); µ(θ)}. (22) 

The operators Qα depend continuously on the 
complex refractive index n – iκ, their form is 

determined by the kernels Kα(r, n, κ) in Eqs. (1) and 
(14). Let us assume that the parameters n and κ are 
unknown and belong to some limited a priori defined 
set M, the elements m0 = (n0, κ0) of which also 
belong to the set M. Let us also assume the existence 
of the exact distribution S0(r), which, as noted in 
Ref. 11, belongs to the set of monotonic bounded 
functions Ω. It is known8 that the set Ω is compact in 
the space Lp[0, R], p > 1. Let us introduce the direct 
product of the sets U = Ω × M, the elements of 
which are pairs u = (S, m), S ∈  Ω, m ∈  M. The set 
U is compact because it is the product of compact 
sets Ω and M. 

If only approximate values αδ are known in 
system (22) instead of the exact values of the right-
hand parts α0, and these are such that || α0 – αδ || ≤ δα, 
one can select any element uδ ∈  U satisfying the 

condition 

 || Qα(n, κ)S – αδ || ≤ δα. 

Let us denote the set of such elements Uδ ⊂  U. 
This set is not empty, because it contains the exact 
solution of the problem u0 = (S0, m0). The following 
inequality is fulfilled for an arbitrary element 
uδ ∈  Uδ : 

 0 0 0 0 0 0( , ) ( , ) ( , )Q n S Q n S Q n Sα α δ δ δ α δκ − κ ≤ κ − α +  

 ( , ) 2 .Q n Sα δ δ δ δ α+ κ − α ≤ δ   (23) 

As the elements uδ belong to a compact set, 
convergence of uδ to u0 at δα → 0 follows from 
inequality (23) and from the continuity of the inverse 
operator Q–1,α on the compact U. Thus, the problem 
on determination of the integral distribution S(r) and 
the complex refractive index of scattering particles 
n – iκ from the system of equations (22) is reduced 
to minimization of the functionals of discrepancy for 
these equations. 

The considered approach to determination of the 
aerosol microstructure and refractive index is quite 
versatile in solving the inverse problems of aerosol 
light scattering and can be used for interpretation of 
joint measurements of different aerosol optical 
characteristics. Taking into account the specific 

features of the relations between optical and 

microphysical parameters in the problems of sun 
photometry mentioned in section 1, minimization of 

the discrepancy functionals of the optical characteristics 
α, β ∈  {ε(λ); µ(θ)} can be carried out separately for the 

variables S and m according to the following scheme. 
  Let us consider the solution εS  reconstructed at 
minimization of the discrepancy functional of the 
extinction coefficient ε on the set Ω at some point 
m ∈  M: 

 
22 ( , ) ( ) – .F S m Q m Sεε ε δ= ε  (24) 

Obviously, the solution ( )S S mε ε=  also is the 
function of the point m = (n, κ). Let us determine the 
parameter .Q Sµ εµ =  If the function Sε  approximates 
the exact solution S0 quite satisfactorily, one can say 
about transition from the parameter ε to the parameter 
µ, which is performed by means of the operator 

1.W Q Q−
µε µ ε=  

The operator Wµε = Wµε(m) is defined on the set 
of measured functions {ε(λ); µ(θ)} and depends on the 
parameters n and κ. Using the operator Wµε(m), one 
can construct the discrepancy functional of the form 
 

 
2 22 ( ) ( ) – – ,F m W mµε µε δ δ δ= ε µ = µ µ  (25) 

defined on the set M of the parameters (n, κ). The 
functional 2 ( )F mµε  [Eq. (25)] defines the difference 
between the experimentally measured scattering phase 
function µδ and µ  that is the same characteristics,  
but calculated using the integral distribution εS  

reconstructed by inverting the measured extinction 
coefficient εδ values. In this case, one can consider the 

problem of estimation of the parameters n and κ 
sought as the problem on minimization of the 

functional 2 ( )F mµε  [Eq. (25)] in the M domain. 
Let us denote by ( , )m n= κ  the point, at which 

the functional 2 ( )F mµε  [Eq. (25)] reaches minimum on 
the set M. Then let us consider the set of parameters 
( , )n κ  and the function ,Sε  bringing to minimum the 
discrepancy functional 2 ( , )F S mεε  [Eq. (24)] at =m m  
as a solution to the inverse problem on the aerosol 
optical characteristics {ε(λ); µ(θ)}. The efficiency of 
determination of the parameters (n, κ) and solution 
of the inverse problem, on the whole, depend on 
sensitivity of the discrepancy functional 2 ( )F mµε  to 
their change in the vicinity of the exact solution. The 
results obtained by numerical simulation of the 

behavior of the functional 2 ( )F mµε  under conditions 
corresponding to real observations by means of sun 
photometers for different aerosol models are presented 
in the next section. 

 

3. Results of numerical simulation 
 
The optical and microphysical model of the 

medium and conditions of observations used in the 
numerical experiment presented below were exactly 
the same as in Refs.1 and 2. Brief characterization of 
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the microstructure of the model medium has been 
given in section 1. 

The values of the extinction coefficient ε(λ) in 
the wavelength range [0.31, 4.0] µm and the scattering 
phase function µ(θ) at three wavelengths λ = 0.31, 
0.4, and 0.55 µm in the angular range 2–12° were 
calculated for the selected model of microstructure 
and the refractive index m0 = 1.5 – i ⋅ 0. Then these 
data, after adding a random error, served the input 
data for solving the inverse problem. 

The dependences of the functional 
( ) ( )/F n F nµε µε= µ  for the model of microstructure 

at p = 0 are shown in Fig. 3a. 
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Fig. 3. Comparison of the discrepancy functionals ( )F nµε  (à) 

and ( )F nεµ  (b) at p = 0 and different values of the imaginary 

part κ. 
 
The error in the input data for the presented 

results was 10%. It is seen from Fig. 3a that the 
minimum of the functional ( )F nµε  at a precisely set 
imaginary part of the refractive index (κ = 0, curve 1) 
is reached at the point n  = n0 = 1.5. The error in 
setting the value κ leads to the shift of the point of 

the minimum of the functional ( )F nµε  to the left. For 
example, at κ = 0.03 we obtain n  = 1.45, the point 
( n  = 1.45; κ  = 0.03) determines the global minimum 
of the functional ( , )F nµε κ  on both variables. Increasing 
the accuracy of determination of the refractive index 
is reached at introduction of a priori restrictions on 
the admissible range of variation of one of the 

parameters. For example, a priori set of the imaginary 
part of the refractive index with the error ∆κ < 0.01 
causes restriction on the error in the reconstructed 
real part to be within the limits ∆n < 0.015. 

For clarity, the 3D surface of the functional 

µε κ( , )F n  is shown in Fig. 4, and the map of isolines 
in the space of parameters n and κ is shown in Fig. 5. 
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Fig. 4. Surface of the functional ( , )F nµε κ  in the space of 

parameters (n, κ) for the model of the medium at p = 0. 
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Fig. 5. Map of isolines of the functional ( , )F nµε κ  on the 

plane (n, κ) at p = 0. 
 

The surface of the functional ( , )F nµε κ  has the 
shape of a ravine surface oriented mainly along the 
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imaginary axis. Isolines in Fig. 5 determine the size of 
the uncertainty range of the estimate of the parameters 
n and κ at minimization of the functional ( , )F nµε κ  up 
to the selected level. The calculations show that the 
observed image will change inessentially if the 

scattering phase function is considered at a single 
wavelength. 

If the sequence order of the characteristics ε  
and µ has been changed in the functional 2 ( )F mµε  

[Eq. (25)], we obtain another functional εµ
2 ( )F m  the 

behavior of which obviously changes. For a comparison, 
Fig. 3 shows the behavior of the functional ( )F nεµ =  

( )/ ,F nεµ= ε  dual relative to the functional ( ).F nµε  As 

is seen from Fig. 3b, the functional ( , )F nεµ κ  keeps  
the extreme properties in the vicinity of the exact 
value of the refractive index, however, its surface has 
less steep slopes and narrower range of variations. 
Therefore the functional ( , )F nεµ κ  is less sensitive to 
variations of the parameters retrieved. 

It is shown in Figs. 6–9 how the behavior of the 
functional ( , )F nµε κ  changes under the effect of 
variations of the model distributions caused by the 
change of the ratio between fine and coarse aerosol 
fractions. As the coarse fraction increases, the range 
of the values of the functional ( , )F nµε κ  changes weakly. 
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Fig. 6. Discrepancy functional ( )F nµε  as a function of the 

real part of the refractive index n at p = 0.2 and different 
values of the imaginary part κ. 
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Fig. 7. Map of isolines of the functional ( , )F nµε κ  on the 

plane (n, κ) at p = 0.2. 
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Fig. 8. Discrepancy functional ( )F nµε  as a function of the 

real part of the refractive index n at p = 0.5 and different 
values of the imaginary part κ. 
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Fig. 9. Map of isolines of the functional ( , )F nµε κ  on the 

plane (n, κ) at p = 0.5. 
 

At the same time, the size of the range of uncertainty 
in estimation of the imaginary part of the refractive 
index κ increases and can exceed the size of the range 

of a priori admissible values. In this case, the 
experiment on determination of the value κ has low 
information capacity. This tendency is well observed 
in Figs. 8 and 9 for p = 0.5. In this example the 
level of the functional ( , )F nµε κ  is lower than the error 

in setting the scattering phase function δ = 10% within 
the entire considered range of variations 0 ≤ κ ≤ 0.07 
at the exact value n = 1.5. 

 

Conclusions 
 
Analysis of the inverse problem of simultaneous 

determination of the size distribution function and 
the refractive index shows that, in the frameworks of 
the Van de Hulst approximation, the spectral 
dependences of the aerosol extinction coefficient do 
not provide for an unambiguous solution even if the 
measurement error is close to zero. The requirements 
are stated in this paper, and the similitude 
relationships are written, to which the ensembles of 
particles with different refractive indices and the 
disperse composition, optically equivalent in the 
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spectral extinction, should satisfy. In particular, it 
has been revealed that the mean radius of optically 
equivalent particles should increase with a decrease 
in the real part of the refractive index. The total 
geometric cross section of particles is kept constant, 
and the volume concentration increases. Hence, the 
noted factors lead to such a change of the shape of 
the scattering phase function in small angle range, at 
which the degree of asymmetry monotonically increases 
with the decrease of the refractive index of particles. 
  The obtained relations between optical and 
microphysical properties of the spectral and angular 
characteristics of light scattering of optically equivalent 
ensembles of particles enable one to propose and 

substantiate a technique for simultaneous reconstruction 
of the aerosol disperse composition and refractive index 

by minimizing the discrepancy between the measured 

scattering phase function and that calculated from 
microstructure reconstructed by inversion of the light 
extinction coefficient. The efficiency of the technique 
was numerically tested for a wide set of aerosol 
models. It was shown that simultaneous determination 
of the real and imaginary parts of the complex 
refractive index is possible with the errors ∆n < 0.05 
and ∆κ < 0.03, respectively. 
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