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A method of reconstruction of meteorological element fields in nodes of spatial-temporal 

regular net from data of observational stations is considered. The method is based on interpretation 
of the sought fields as expansion into finite series over functions of natural orthogonal basis, which 
are calculated over the ensemble of spatial-temporal realizations computed by the dynamic 
probabilistic method at a preassigned actual statistic structure of the meteoelement fields. In fact, the 
method of fast assimilation of observational data is proposed.  

 
The problem of analysis and interpretation of 

actual information is one of the most important 
problems, which appears when constructing 
mathematic models for physical processes, weather 
forecast, general circulation in the atmosphere and 
ocean, climate theory, as well as when studying and 
estimating the human activity effects on the 
environment. One of the points of this problem is in 
working out of methods of “compressing” the 
information and separation of its most informative 
part as a sum of a finite Fourier series with a small 
number of terms.  

In this paper, a method of four-dimensional 
analysis of data is proposed based on climatic 
ensemble of possible realizations of corresponding 
multidimensional hydrometeorological fields for some 
chosen time  interval and given region in the form1,2: 
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where 
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is the realization vector of fields of the speed, 
temperature, geopotential, and others in spatial-

temporal points ( , )j ktX  of the considered net region 

of n dimensionality; the index T defines the 
transposition operation.  

To construct this ensemble, the dynamical 
probabilistic method is used, which is described in 
detail in Refs. 1–3. A feature of such an approach is 
the use in the limits of a uniform model of actual 
measurements, statistical modeling, and numerical 
model of atmospheric hydrothermodynamics. The 
basic connecting component in this case is variational 
assimilation of information by the hydrodynamic 
model.  

The data of the NCEP/NCAR temperature field 
reanalysis, 1948–2005, were used as the actual 
ones at 10 standard levels for winter season with a 
time discreteness of 6 h and a horizontal one of 
2.5 × 2.5°. The selection was conducted from a given 

North hemisphere local region Ω  of 10 × 10° size, 
centered at a point with coordinates 60.56° N and 
77.7° E. The problem was considered in the 
coordinate system x, y, p in the region, the bottom 
base of which was a rectangle on a plane tangential 
at this central point. When constructing the net 
region, a resolution of 24 × 20 along x and y with 
steps Δx = 23.85 km and Δy = 58.74 km, 
respectively, was chosen. 

The initial stage in constructing the climatic 
ensemble (1) is the building of the corresponding 
ensemble of realizations  

 =

c( ){ , 1,2,...}i
n iξ   (2) 

with the use of the following statistical modeling 
method.1  

Let R be a multidimensional correlation matrix. 
In our case, the correlation matrix R is calculated by 
the reanalysis data for the above region. The matrix 
spectral decomposition is presented as  

 T
,R W W= Λ   (3) 

where W is the matrix of eigenvectors of the 
correlation matrix R; Λ is the diagonal matrix of 
corresponding eigenvalues. Note that representation 
(3) is just its decomposition into so called main 
factors, and Equation (3) is the corresponding 
problem of determination of the main factors. The 
further step is determination of the R square root in 

the form 1/2 1/2 T
,R W W= Λ  where 1/2

Λ  is the 

diagonal matrix with square roots of corresponding 
 matrix eigenvalues on the diagonal.  

Then we can determine the random vector  
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where ( ) Ò( , , , ) , 1,2,i
j j j jx y p t i = …ψ  is the Gaussian 

random vector with a unit dispersion and zero mean; 
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Dξ is the diagonal matrix of dispersions; 

( , , , )j j j jx y p tξ  is the corresponding vector of means. 

It is easy to see that the correlation matrix of the 

random vector 
c

( )

( )

i

n
ξ  exactly coincides with R. 

Note that in the general case the realizations 
from the ensemble (2) are determined on some set of 
irregular spatial-temporal points. This is fully 
specified by measurements used in calculating R. 
Besides, the ensemble (2) includes, as a rule, not all 
fields necessary for numerical models of atmosphere 
dynamics, and the components (temperature, speed, 
pressure, etc.) of the ensemble (2) are not consistent 
with the corresponding numerical model.  

Thus, there appears a problem of the best 
approximation of the ensemble (2) by the 
corresponding ensemble of realizations, in which 
every realization would conform to the 
hydrothermodynamics numerical model and 
corresponding statistic properties would maximally 
close.  

To do this, we used the variation assimilation 
method.3 It should be noted that the variation 
assimilation is to be applied within the whole 
considered time interval and within the limits of 
predictability of the model. Because of nonlinearity 
of the initial numerical model of the atmospheric 
hydrodynamics and, as a consequence, nonuniqueness 
of solution of the problem of minimum of the 
considered quality functional, as well as by virtue of 
the fact that in general case the prove of the 
convergence and uniqueness of the obtained solutions 
is absent, it is necessary very accurately introduce 
additional minimizable fuctionals into the model, 
such as the model quality or model measurement 
functionals, or others. Therefore, in each particular 
case, additional theoretic or numerical investigations 
of the efficiency of such introductions of functionals 
or equations determining corresponding links between 
the  components  under  consideration  are necessary. 
 Besides, to construct the climatic ensemble of 
realizations, it is important to consider the problem 
of variational assimilation on the whole time 
interval, because the use of the so called sequential 
step-by-step assimilation does not provide the 
necessary smoothness of solutions and the 
corresponding trend for further use, for example, the 
obtained field in the prediction mode.  

Thus, to build the finite climatic ensemble of 
realizations (1) we apply the variational assimilation. 
To do this, for each realization from ensemble (2) the 
variation assimilation problem is solved with the use 
of the mathematical model of atmosphere 
hydrothermodynamics,1,2 that is resulted in an 
ensemble of new realizations, differing from the 
initial one by the accuracy of assimilation problem 
solution and complying with properties of 
mathematical model.  

The dynamic probabilistic model and some its 
characteristics are described in detail in Ref. 3. To 
solve the problem, the iteration method of gradient 
descent based on the Lagrange method and solving 
direct and conjugate problems were used. In 
numerical calculations the ensemble (2) was 
presented only by temperature field realizations. 
However, the ensemble (1) already contains all fields 
of meteorological elements in accordance with the 
used model.1,2 So, the model both is the spatial-
temporal interpolant and allows reproducing the 
absent fields of meteoelements. Analysis of the 
ensemble (1) statistic structure shows that it can be 
used as climatic one when solving applied problems 
including admixture transfer in the atmosphere, or 
when studying processes of emission into the 
atmosphere.  

In this paper we use the obtained climatic 
ensemble (1) to solve the problem of four-
dimensional analysis of atmospheric 
hydrometeorological data. One of the algorithms for 
such application4 is based on representation of the 
sought hydrometeorologic field in the form of the 
corresponding series over natural orthogonal 
functions, calculated with actual data only for 
geopotential’s field in winter period at a rather 
limited sample in hand.  

Since the ensemble (1) already contains 
statistically independent spatial-temporal 
realizations, including a full set of hydrometeorologic 
components (temperature, geopotential, speed of 
wind), mutually complied relative to the numerical 
model of the atmospheric dynamics, then the use of 
this method in the four-dimensional analysis and 
assimilation of the corresponding actual data on the 
whole is natural. It is clear that the statistical 
significance of the obtained results is fully 
determined by the ensemble (1). 

This approach has a series of advantages. First, 
the basis of natural orthogonal functions, built with 
sufficiently large sample, has necessary properties of 
statistic structure of meteoelement fields, which is of 
importance at a rare net of stations. Second, the 
number of basic functions is supposed to be 
comparatively small, which allows constructing the 
efficient algorithm. In addition, it follows from 
methods of constructing of the natural orthogonal 
basis that every its function has statistically complied 
components, therefore, the result of reconstruction by 
this method has the same degree of agreement that 
the basic functions.  

To calculate basic functions of the natural 
orthogonal basis (basic factors)  

 { } ( 1, )i i m=ϕ   (5) 

over the ensemble (1), one of modifications of the 
algorithm5 for generalized covariation matrix Ra of 
the ensemble (1) was used. Logarithms of eigenvalues 
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characterizing the information content of the 
calculated basic functions, are presented in Fig. 1, 
which shows that at 1615 realizations in the 
ensemble (1) 50 basic functions are sufficient to 
describe the considered meteorological fields with a 
good accuracy (m = 50).  

 

 

Fig. 1. Logarithms of eigenvalues of the correlation matrix 
calculated over the realization ensemble (1). 

 

Thus, following Ref. 4, consider a subspace of 

m
R�  vectors of the real vector space RN, which 

components are values of the meteocomponent fields 
in nodes of the regular spatial-temporal net region 

Ω
ht ⊂ Ω. Let vector-functions (5) be the basis of .mR�  

Then any vector 
m

R∈
�ϕ  can be presented in the form 

of the Fourier series  

 ,= Φaϕ   (6)  

where Φ is the matrix of N × m dimensionality 

composed of the basis vectors { } ( 1, );i i mϕ =  

T

1( ,..., )
m

a a=a  is  the vector  of Fourier coefficients. 

 Let in the considered region Ω an irregular net 
Θ be given, in nods of which the measurement data of 
the meteoelement fields under study are known. 
Consider the subspace G of the Euclidian space 
determined on Θ, and take the values of the studied 

fields of one or several meteoelements (like in 
m

R� ) 

as the vector components. Introduce a scalar product 
in this subspace  

 ( , ) ( , ),M M=ϕ ψ ϕ ψ  

where ϕ, ψ ∈ G; symbol (,) denotes the scalar 
product in the Euclidian space; M is the positively 
determined symmetric matrix, the choice of which is 
determined by the investigation goals, physical 
dimensions of the vector components, and a priory 
information on the structure of the considered fields. 
In this case, the scalar product is a net analog of the 
corresponding scalar product determining the full 
energy integral in the used hydrothermodynamics 
model  in  solving  the variation  assimilation problem.  

Reconstruction of meteoelement fields in nodes 

of Ω
ht from their values measured on the irregular 

station net in this case is reduced to finding the 
vector of decomposition coefficients in formula (6) in 

such a way that the interpolated values of 
m

R∈
�ϕ  

less deviate from the corresponding measured values 
in Θ nodes. 

Let ψmeas be the vector composed of values in 
nodes of the irregular net region Θ ⊂ Ω, and ϕ is a 

vector from ,mR�  which should be constructed by the 

given vector ψmeas. Denote through ψmeas = Lϕ the 
vector ϕ image in the subspace G, obtained with the 
help of the linear operator L of interpolation from 
the regular net to irregular one. Since ϕ ∈ Rm can be 
presented in the form (6), then ψ = LΦa. Consider 
the functional characterizing the degree of deviation 
of ψmeas in points of irregular net of stations from 
values of the vector-function ϕ ∈ Rm, which are 
interpolated to the irregular net: 

 

 J = (ψmeas – LΦa, ψmeas – LΦa)M. (7) 

From the condition of the J functional 
extremum we obtain a linear inhomogeneous 
algebraic system of equations for determination of the 

coefficients , 1, ,ia i m=   

 T T( ) ( ) .L ML L MΦ Φ = Φa ψ   (8)  

The system can be rewritten in the form  

 Ba = f,  (9) 

where B = (LΦ)TMLΦ is a symmetrical nonnegatively 
defined matrix; f = (LΦ)TMψmeas is the vector of the 
system (8) right part.  

Note that system (9) in some cases of mutual 
arrangement of nods of the irregular net of stations 
can be ill-conditioned. Therefore, the following 
algorithm is used to solve it.  

Matrix B is presented as 

 T
,B B BB W W= Λ   (10) 

where ΛB is the diagonal matrix of eigenvalues; WB 
is the orthogonal matrix of the transform, the 
columns of which are eigenvectors of B. 

Then, taking into account relation (10), the 
solution of the system (9)  is obtained by the formula  
 

 T
,B B BW W

+

= Λa f   

where  

 diag{ }, ( 1, )B i i m
+ +

Λ = λ =  

is the diagonal matrix built by analogy with the 
pseudo-inverse matrix, namely,  
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Fig. 2. Temperature field lines at a level of 500 mbar  
and t = 0, obtained after the variational assimilation of data 
(solid lines), given in the point defined by *, as well as the 
similar lines resulted from the four-dimensional analysis 
(dash lines) over basic factors. 
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ε is some sufficiently small number.  
Finally, the field ϕ can be retrieved using the 

obtained coefficient vector a in the regular net region 

Ω
ht by formula (6). 

To illustrate the efficiency of the above method, 
the temperature fields in the region Θ  for moments 
t = 0 and 6 h were modeled by the formula (4) at 10 
standard levels. These data were input for solving the 
problem of variational assimilation with the help of 
numerical model and for four-dimensional analysis by 
formulas (6)–(9). Figure 2 presents the comparative 
calculation results for a level of 500 mbar and 
t = 0 h, which show a sufficiently good qualitative 
coincidence of the corresponding line fields. Maximal 
difference between values of these fields and data  
is 0.93°. 
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