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Light scattering phase functions on the horizontally oriented hexagonal ice plates are 
numerically calculated in the geometrical optics approximation. The main quantity indicators of 
halos (Sundog, parhelion of 120°, and others) are obtained at different light incidence angles and 
aspect ratios of the plate. The scattering phase function parameterization in parhelic and subparhelic 
circles is offered based on the integral contribution of narrow angular peaks (halos), based on the 
tabulated weight coefficients.  

 

Introduction 

Light scattering matrix for ice crystals in case of 
their random orientation was thoroughly investigated 
during the last 20–30 years by numerical methods. 
The obtained results were published, for example, in 
Refs. 1–4. It is known that ice crystals, when 
falling, often take a horizontal orientation due to the 
aerodynamic forces. It is confirmed by the fact that 
many well-known halo phenomena observed in the 
atmosphere, could arise only from the horizontal 
orientation of ice crystals. Remind that the 
atmospheric halos represent narrow stripes with 
bright spots in the sky, which are observed, when 
sunlight is passing through the crystal clouds.  

According to the scattering theory, the scattered 
light intensity or its standardized value, the so-called 
scattering phase function, becomes the two-
dimensional function, which is set on the sphere of 
scattering directions for the predominantly oriented 
non-spherical particles unlike the random orientation. 
The shape of the phase function also depends on 
direction of light incidence on the particle.  

Thus, the halo patterns observed in the sky 
correspond to the scattering phase functions for the 
predominantly oriented ice crystals. These phase 
functions differ from zero only along some lines or 
stripes on the sphere of scattering directions.  

The position and shape of halo stripes are well 
studied and explained within the framework of 
geometrical optics.5 However, both the intensity and 
light polarization along these stripes, i.å., required 
radiation characteristics of crystal clouds, are not 
studied yet. The scattering phase functions for the 
horizontally oriented hexagonal plates and bars were 
calculated in Refs. 6 and 7, devoted to the given 
problem.  

Indeed, a number of input parameters6,7 is so 
insignificant that these data cannot be used for the 
more or less representative calculations of light 
scattering in crystal clouds. Besides, note that 
narrow sharp peaks are typical for the scattering 
phase functions calculated in the geometrical optics 

approximation. These peaks represent the integrated 
singularities, i.å., the phase function becomes 
infinite, but its integral remains finite by scattering 
directions. Therefore, it is impossible to restore the 
numerical values, necessary for calculating the 
problems of light multiple scattering from the 
scattering phase function diagrams presented in 
Refs. 6 and 7.  

The scattering phase functions are calculated in 
the given study for a simpler case of the horizontally 
oriented hexagonal plates. These phase functions 
depend both on the shape parameter equal to the 
ratio of the plate’s height to its diameter and on the 
light incidence angle. The main purpose of the 
calculations is to build the database, which can be 
used both for theoretical calculations of light transfer 
in the cirrus clouds and for the quantitative 
interpretation of halo patterns observed in the 
atmosphere. The scattering phase functions are 
calculated in the geometrical optics approximation 
according to the tracing algorithm of crystal faces.8,9 
These phase functions represent the histograms with a 
standard step of 1°. Tables 1, 2, and 3 present the 
interval of variation incidence angles of 10°, which is 
sufficient for numerical calculations of the 
atmospheric optics problems.  

To avoid difficulties connected with sharp peaks 
in the scattering phase function, we separate all the 
peaks as single terms. Evidently, each peak is formed 
by the definite type of the photon path in a crystal 
and reflects some simple physical regularity. Hence, 
one must conclude that the shape of these peaks 
poorly depends both on light incidence angles and 
shape parameter of particles. It is possible to 
parameterize the scattering phase functions only by 
integrals of the peaks, which are called the weight 
coefficients in the given study. They determine the 
each peak contribution to the total scattering phase 
function, are tabulated as functions of light incidence 
angles and the crystal shape parameter.  

Note that particles in the real atmosphere are 
not horizontally oriented, but oscillate relative to the 
horizontal plane. Therefore, the obtained data are 
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only the necessary initial base for future development 
of an optical model of cirrus clouds. The effect of ice 
crystal orientation oscillations on the light scattering 
matrix was considered in Ref. 10, but the obtained 
results are illustrative and cannot be used by other 
authors, for example, for the numerical calculations 
of light multiple scattering in cirrus clouds. The light 
scattering matrices11,12 on the predominantly oriented 
ice crystals are considered in detail, but the 
consideration is limited only by the light 
backscattering usable in the lidar sensing  

1. Zenith distribution of scattered 
light 

The hexagonal plate is one of the most 
distributed forms of ice crystals in crystal clouds. 
Besides, such plates represent the simplest shape of 
ice crystals. They represent a classical object for 
theoretical calculations. In the given work, we deal 
only with hexagonal plates, although some results 
will be applicable to the plates of more complicated 
shapes. The hexagonal plate is determined by two 
parameters: the side of hexagonal faces a and the 
distance between these faces L.  

The scattering phase function in the geometrical 
optics approximation depends not on the absolute 
crystal sizes, but only on its shape, which is 
determined by the ratios of the plate height to the 
hexagon diameter F = L/2a. We will call F the 
shape parameter. If the main crystal axis passing 
through the centre of hexagonal faces is 
perpendicular to the horizon, such orientation is 
called horizontal. The fixed orientation of the plate is 
determined by the azimuth turn angle ϕ0 relative to 
the principal axis. Further, the plate will be 
considered the randomly oriented in the horizontal 
plane, i.e., angular distribution of ϕ0 in the interval 
[0, 2π] is uniform. Then, the procedure of statistical 
averaging is reduced to the integral calculation 
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Unlike the standard problem of light scattering 
on the sphere or on the non-spherical but randomly 
oriented particle, the scattering and extinction cross-
sections for the non-spherical particle with the 
predominant orientation already depend on the light 
incidence direction. In the geometrical optics 
approximation, the extinction cross section is equal 
to the particle projection area relative to the light 
incidence direction, and then this area is averaged 
over ϕ0. In particular, for the hexagonal plate 
randomly oriented in the horizontal plane, the 
extinction cross section is described by the following 
formula: 
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where θ0 is the angle between the principle axis of 
the plate and the light incidence direction; S1 and S2 

are the areas of hexagonal and rectangular faces. In 
the visible wavelength range, light is not absorbed by 
ice, then the scattering cross section is also 
determined by the formula (1). 

Parameter <S> determines the averaged energy 
flow falling on the particle, which then is propagated 
in scattering directions. The distribution density of 
this energy flow in the scattering directions n will be 
called the scattered light intensity I (n, n0), i.å., 

 0 0( , )d ( ) ,I S=< >∫ n n n n   

where n0 is the incidence direction. The normalized 
scattered light intensity  

 0 0 0( , ) ( , )/ ( )p I S= < >n n n n n   

is called the scattering phase function, where 

 0( , )d 1.p =∫ n n n   

Thus, the scattering phase function does not depend 
on the particle absolute sizes, but depends on  
F = L/2a. Besides, it depends on the incident light 
polarization, however, only the nonpolarized incident 
light will be considered in this work. 

The scattering direction n is set by the zenith θ 
and azimuth ϕ angles of the spherical coordinate 
system. It is convenient to designate the down-going 
vertical as θ = 0. For example, the sunrays follow 
this direction, when the Sun is at zenith. Due to the 
symmetry of plates relative to the horizontal plane, 
0 ≤ θ0 ≤ π/2 and 0 ≤ θ ≤ π. The azimuth scattering 
angle ϕ is counted off from the incidence direction 
azimuth. Note that when the sunlight passes through 
the crystal clouds, the observer on the Earth can see 
the light scattering in the forward hemisphere of the 
scattering 0 ≤ θ ≤ π/2, and from the airplane or from 
space, one can see only the back hemisphere 
π/2 ≤ θ ≤ π.  

The typical feature of the field scattered on the 
horizontally oriented plates, is the scattered light 
localization in four horizontal circles with zenith 
angles θj (θ0), where j equals to 1, ..., 4. In particular, 
when observing the scattered sunlight at the Sun 
altitude θ0 

the zenith angle of the first circle is equal 
to the incidence angle θ1 = θ0. 

Since it passes through the Sun on the sphere of 
scattering directions, it is called the parhelic circle. 
The second circle θ2 is also located in the forward 
hemisphere and has two different names. If it is 
located under the parhelic circle relative to the 
observer on the Earth, it is called the near-
horizontal, and if above – the near-zenith. The third 
and the fourth circles θ3,4, observed from space, are 
formed symmetrically relative to the horizon: 
θ3,4 = π – θ1,2. They are called the subparhelic and 
subnear-horizontal or subnear-zenith circles, 
respectively.  
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Describe the formation of these circles in the 
geometrical optics approximation. For the better 
interpretation, let us treat light as population of 
photons, where the radiation wave nature is ignored, 
and the photon is treated as a corpuscle linearly 
propagating in the uniform space. This treatment of 
radiation is widely used, for example, in problems 
described by the radiation transfer equations.13 First, 
consider the light incidence on the flat medium 
boundary vertical relative to the Earth surface. As is 
known, the vertical component of photon velocity 
does not change when reflecting and refracting on 
such a plane, and the horizontal component is 
constant by module and only changes its direction 
depending on the plane orientation.  

Therefore, when rotating the plane around the 
vertical axis, the reflected photons have the 
propagation directions, enclosed in a cone, whose 
aperture angle θ1 = θ0 corresponds to the angle of 
beam reflection from the vertical plane presented in 
Fig. 1à. From the opposite side of the rotating plane, 
the refracted photons also form a cone, but with 
different aperture angle. For the plates randomly 
oriented in the horizontal plane, the photon 
propagation directions inside the particles are 
concentrated in two cones corresponding to the 
entering of photons either through the horizontal or 
vertical faces. Then, a random number of collisions 
with any faces inside the crystal do not remove the 
photon out of its direction cone. As a result, the 
problem of zenith scattering angles is reduced to the 
plane problem of light reflection and transmission 
through the rectangular plate (see Fig. 1à) 
independently of the number of photon collisions.  

 

 
Fig. 1. The photon paths in the horizontally oriented 
hexagonal plate: à denotes the formation of four zenith 
scattering angles; b denotes the Sundog; c denotes the 
parhelion of 120°; d denotes the peak of 150°; b–d denote 
the light azimuth distributions in parhelic and subparhelic 
circles; the solid lines denote the main paths and the dashed 
lines denote the accompanied paths. 

As it follows from Fig. 1à, the photons falling 
on the upper horizontal face and leaving after the 
random number of collisions out of any horizontal 
face, form the parhelic (θ1 = θ0) and subparhelic 
(θ3 = π – θ0) circles. This is also valid for the photons 
falling on the vertical face and leaving from the 
vertical faces. If light falls on the horizontal face and 
leaves from the vertical face or, vice versa, then, due 
to the light transmission through the rectangular 
wedge with the refractive index n, the circles θ2 (θ0) 
and θ4 (θ0) are obtained.  

Consider θ2 positions from the point of view of 
the observer from the Earth. Figure 1à presents the 
Sun falling counter-clockwise from zenith θ0 = 0°. In 
the beginning, when θ0 = 0, the rays sliding along 
the left vertical face, form, refracting through the 
left lower angle, the circle at the angle θ2 (0°) = θ*, 

determined by the expression * 2sin 1,nθ = −  where n 

is the refractive index of the crystal. In particular, at 
n = 1.31 θ*

 ≈ 58°. When the Sun descends down to the 
altitude θ0 = π/2 – θ*, then θ2 descends to the 
horizon θ = π/2, according to the formula  

 2 2

2 0 0( ) arcsin cosnθ θ = − θ   (2) 

and is called the near-horizon. Note that θ2 (π/2 –
 θ*) = π/2 due to the total internal reflection at the 
lower horizontal face, the light intensity in this circle 
becomes zero. 

Figure 1à shows that the right upper angle does 
not form the refracted beam due to the total internal 
reflection on the right part of the face. Therefore, in 
the interval of incidence angles π/2 – θ*

 < θ0 < θ*, 
the second circle θ2 does not appear owing to the 
total internal reflection. However, when θ0 is equal 
to θ*, the right upper angle begins to transmit the 
refracted light, and θ2 appears at θ = 0. Then, as far 
as the Sun descends, the near-zenith circle descends 
down to the critical angle θ2 (π/2) = π/2 – θ*, 
observed at sunset. The dependence of the scattering 
angle on the incidence angle is described by the 
inverse function to Eq. (2). The circle θ4 (θ0) is 
symmetrical relative to the horizontal plane. 

Hence, the emergence of four circles in the 
scattered light is induced by the horizontal and 
vertical faces in crystals and does not depend on the 
shape of the horizontally oriented plates. Thus, the 
specified four circles are characteristic for the 
horizontally oriented plates of any shape. Strictly 
speaking, the shape of the plates should be convex. If 
the plates have the form of stars, the photons going 
out of one end of the star at angles of θ2 and θ4, can 
go into another end of the star. In this case, this will 
lead to the emergence of additional circles or 
scattering angles. Our estimations show that one can 
neglect these components due to their insignificant 
energy. Besides, at θ* > θ0 > π/2 – θ*, when the 
scattering occurs only at θ1 = θ0 and θ3 = π – θ0, the 
additional scattering angles cannot appear in general 
for the plates of any shape.  
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Thus, the scattering phase function for the 
horizontally oriented plates consists of four functions 
localized on the circles θj: 
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where the δ-function denotes the localization of 
functions on the circle, and the functions of azimuth 
scattering angle Pj(ϕ) have the meaning of scattering 
phase function of the given circle. A normalization 
condition of the total scattering phase function by a 
unit leads to the normalization of functions Pj(ϕ) by 
the following coefficients: 
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The coefficients Qj have the physical meaning of 
weight coefficients at energy distribution of the 
scattered field in these four circles.  

Table 1 presents the calculated coefficients Qi 
for three values of F: 0.1, 0.2, and 0.4 at different 
incidence angles. The refractive index of ice is equal 
to 1.31.  

 

Table 1. Scattered light distribution in four zenith circles  
at different light incidence angles for F equal to 0.1, 0.2, 
and 0.4, respectively. Total energy is under 100% due to 
the ignoring of paths with the number of photon internal 

collisions more than 6 

Incidence angle θ0, degrees Weight 
coefficient, % 10 20 30 40 50 60 70 80 

 F = 0.1 
Q1  95.2 92.8 90.4 86.5 86.7 80.2 64.1 35.5
Q2  1.4 3.7 5.8 0 0 1.2 3.9 3.5
Q3  3.4 3.4 3.7 4.7 10.3 16.1 29.7 58.6
Q4  <0.1 <0.1 <0.1 0 0 <0.1 <0.1 <0.1
In total  100 99.9 99.9 91.2 97 97.5 97.7 97.6
 F = 0.2 

Q1  93.8 89.6 86.5 82 84.5 77.7 47.5 44.5
Q2  2.6 7.1 8.6 0 0 2 5.9 5.5
Q3  3.5 3.2 4.7 12.6 12.3 17.5 43.7 47.9
Q4  <0.1 <0.1 <0.1 0 0 <0.1 <0.1 <0.1
In total 99.9 99.9 99.8 94.6 96.9 97.2 97.1 97.9
 F = 0.4 

Q1  91.8 84.4 75.4 82.2 67.4 54.2 53 64.3
Q2  4.9 12.8 16 0 0 3.1 8.1 6
Q3  3.1 2.7 5.2 13 28.6 40.4 37 27.4
Q4  <0.1 <0.1 <0.1 0 0 <0.1 <0.1 <0.1
In total 99.8 99.9 99.6 95.2 96 97.7 98.1 97.7
 
The main part of the scattered energy (70–90%) 

is concentrated in the first (parhelic) circle θ1. The 
circle θ4 contains no more than 0.1% of the scattered 
energy and is of no practical interest. The rest two 
circles θ2 and θ3 redistribute no more than 30% of the 
energy, and here the energy redistribution is 
connected with appearance or disappearance of total 

internal reflection when passing the right angle (see 
Fig. 1à). 

2. Azimuth distribution of scattered 
light  

The scattered field goes out of crystal faces in 
the form of plane-parallel beams with cross section in 
the form of polygons. These beams are propagated 
into different scattering angles and have a different 
polarization. Each beam is characterized by its 
photon path, i.å., by the sequence of photon 
collisions with definite crystal faces. We have 
developed a program,8,9 which allows calculating all 
the outgoing beam parameters for the time no more 
than 1 min at a fixed orientation of the crystal. For 
the horizontally oriented plates, all beams on the 
sphere of scattering directions correspond to the 
points at four above-mentioned circles, where each 
point is described analytically by the Dirac δ-
function. The scattered light intensity along the 
circle at a fixed orientation of the plate is described 
by the expression  

 0 0 0( ) ( ) ( ) [ ( )],k k k

k

I s Nϕ = ϕ ϕ δ ϕ − ϕ ϕ∑   (5) 

where the index j, indicating the circle number, is 
missed for briefness; the index k corresponds to a 
definite photon path, so that summation is carried 
out by all paths, i.å., beams; the function ϕk (ϕ0) 
describes the azimuth direction of the k-beam 
propagation at azimuth angle ϕ0 of plate orientation; 
Nk is the ray intensity in the k-beam, which is 
calculated with regard for polarization at the given 
angles of the photon reflection and refraction by the 
crystal faces in correspondence with the Fresnel 
coefficients; sk is the cross section area of the k-th 
beam. The average scattered radiation intensity by 
the plate orientations is easily calculated due to the 
δ-function in Eq. (5)  

 0d
( ) ( ) ( ) .

d
k k

kk

I s N
⎛ ⎞ϕ

< ϕ >= ϕ ϕ ⎜ ⎟
ϕ⎝ ⎠

∑   (6) 

The last term in Eq. (6) is equal to the 
derivative of ϕ0 (ϕk), inverse to ϕk (ϕ0). Equation (6) 
is convenient for analytical consideration, and at 
numerical calculations, we calculate directly the 
intensity histograms along the circles with averaging 
over ϕ0 and obtain the scattering phase functions for 
the j-th circle by the formula 

 ( ) ( ) / .j jP I Sϕ =< ϕ > < >   (7) 

Henceforth, the scattering phase functions Pj are 

divided into sums of a small number of terms 

 ( ) ( ),j jm

m

P Pϕ = ϕ∑  

where 



538   Atmos. Oceanic Opt.  /July  2007/  Vol. 20,  No. 7 A.V. Burnashov and A.G. Borovoy 
 

 

 

2

0

( )d ;jm j jmP Q c

π

ϕ ϕ =∫
 

1.jm

m

c =∑
 

 (8) 

Here the coefficients ñjm have a physical meaning of 
weight coefficients determining a fraction of energy 
inside the given j-circle falling on the m-term. The 
functions Pjm(ϕ) will be called the scattering phase 
functions for the given term. 

3. The first (parhelic) circle 

The main part of the scattered light energy is 
concentrated in the parhelic circle. Figure 2 presents 
the scattering phase functions in the parhelic circle 
P1(ϕ) for the plate with F = 0.2 at different 
incidence angles. Here, at small θ0 = 15° (Fig. 2à), 
the light falling on the upper hexagonal face is 
predominant. 

On the contrary, at θ0 = 75° (Fig. 2c), the light 
falling on the vertical faces prevails. Figure 2b 
presents the intermediate case (θ0 = 45°). The 
numerical results in Fig. 2 represent histograms 
calculated at a standard step of 1°. The number of 
photon collisions was limited by 7, since no more 
than 2% of the scattered energy falls on the highest 
orders of collisions. 

As it follows from Fig. 2, four peaks are 
significant in the azimuth scattering phase functions 
P1(ϕ), we separate them in individual terms of 
expansion (8): a peak in forward direction (m = 1), 
the Sundog (m = 2), the parhelion of 120° (m = 3), 
and a peak of 150° (m = 4). Other photon paths form 
more or less smooth ϕ dependence and are united into 
the remainder (m = 5). 

Let us path to the qualitative description of 
these terms. As follows from the results of the 
numerical calculation, each peak is formed by a small 
number of definite paths. The angular dependence for 
each term of expansion (8) reflects a simple physical 
regularity and slightly depends on shape parameters 
of the crystal and the light incidence angle. The 
 main dependence of azimuth scattering phase 
functions on the incidence angles and shape 
parameters is manifested itself only in values of 
weight coefficients cjm. This important conclusion 
allows parameterization of the scattering phase 
functions by cjm values, which are presented in 
Tables 2 and 3.  

In particular, any two parallel faces of a crystal 
are equivalent to the plane-parallel plate. Therefore, 
the photon passed through these faces during two 
collisions, leaves the crystal in a strictly forward 
scattering direction. The angular distribution of the 
photons is described by the Dirac δ-function. The 
same is valid for photons, which are multiply 
rereflected from these faces. As a result, we obtain 
the peak in the forward direction P11(ϕ) = Q1c11δ(ϕ), 
whose angular distribution is described by the Dirac 
δ-function, and the calculated weight coefficients c11 
are presented in Table 2 in the column “forward 
peak.”  

 

à 

 

b 

 

c 

Fig. 2. Azimuth scattering phase functions in the parhelic 
circle for the plate with F = 0.2 at light incidence angles 
θ0 = 15° (à), 45° (b), and 75° (c). 
  

The next peak (m = 2) is called parhelion (or 
the Sundog). The Sundog is formed due to the photon 
passage through the wedge at γ = 60°, formed by the 
rectangular faces of the plate (see Fig. 1b). In a 
general case,14 the passage of photons through the 
wedge with a random γ and their random incidence 
direction is described by quite simple analytical 
expressions. According to these expressions, the 
longitudinal component of the photon propagation 
direction does not change after passing through the 
wedge.  
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Table 2. Weight coefficients c1m of peaks in the parhelic circle for the plates with F = 0.1, 0.2, and 0.4 

Incidence angle θ0, degrees Weight 
coefficient, % 10 20 30 40 50 60 70 80 90 

 F = 0.1 
c11 (forward peak) 96.8 94.8 92.8 90.1 83.6 83.4 83.5 74.8 35.6 
c12 (Sundog) 0 0 0 0.7 2.7 4.6 5.4 13.2 49.7 

c13 (parhelion of 120°) < 0.1 < 0.1 0.1 0.1 0.1 0.2 0.3 0.3 < 0.1 
c14 (peak of 150°) 0 0 0 0 0 < 0.1 0.1 0.3 2.7 

c15 (remainder) 3.1 5.1 7 9 13.5 11.7 10.6 11.3 11.9 
 F = 0.2 
c11 (forward peak) 94 89.8 86.1 80.7 72.9 70.7 71.4 46.3 35.6 
c12 (Sundog) 0 0 < 0.1 2.3 7.8 10.2 5.2 34.5 49.7 

c13 (parhelion of 120°) < 0.1 0.1 0.2 0.4 0.5 0.7 1.2 0.7 < 0.1 
c14 (peak of 150°) 0 0 0 0 < 0.1 <0.1 0.6 1.4 2.7 
c15 (remainder) 5.9 10 13.6 16.5 18.7 18.3 21.5 17 11.9 
 F = 0.4 
c11 (forward peak) 88.4 79.6 72.3 69.1 48.2 33.4 28 28.8 35.6 

c12 (Sundog) 0 0 0.1 1.3 3.8 14.9 32.4 48.4 49.7 
c13 (parhelion of 120°) < 0.1 0.3 0.9 1.2 2.4 3.5 3.3 1 < 0.1 

c14 (peak of 150°) 0.0 0 0 0.2 1.1 1.8 3.7 3.5 2.7 
c15 (remainder) 11.5 20 26.6 28.1 44.5 46.2 32.1 17.3 11.9 

 
A perpendicular component is found from the 

plane problem of photon passage through the wedge, 
but the refractive index inside the wedge n is 
substituted with the efficient refractive Bravais index 

2 2 1/2( cos ) /sin ,n n′ = − β β  where β is the angle 

between the photon incidence direction and the 
wedge rib. If to rotate the wedge around its rib, the 
maximal deviation of the emitted photons’ direction 
is observed at their tangent incidence on the wedge’s 
face. This maximal azimuth angle deviation is 
described by the following formula: 

 

ο
⎛ ⎞γ

ϕ = γ + γ − − − =⎜ ⎟β⎝ ⎠
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As far as the wedge rotates, the photon 
deviation is firstly decreased up to attaining the 
minimal value of azimuth angle described by the 
formula: 

min 2arcsin sin 60 2arcsin( /2).
2

n n
γ⎛ ⎞′ ′ϕ = γ + − = + −⎜ ⎟

⎝ ⎠
�  

  (10) 

Note that at φ = φmin, the photon path cuts off equal 
segments of both wedge faces. Then, the photon 
deviation increases again. Figure 1b presents the path 
contributing to the interval of azimuth angles 
determined by Eqs. (9) and (10). In Eq. (6), at 

minimal deviation angle, we have ϕ ϕ =0d /d 0.k  Since 

ϕ ϕ = ∞0d /d ,k  the averaged intensity of the scattered 

light at the minimal deviation becomes infinity, i.å., 
it is an integrated singularity. This is the very bright 
spot, which is perceived by the observer as a Sundog 
when  the sunlight passes through  the crystal clouds.  
 In spite of a series of statements, which can be 
found in publications, the integrated singularities in 

scattering phase functions do not break any physical 
principles, since the experimentally registered values 
are not the scattering phase functions themselves, but 
their integrals in some finite angular limit 
corresponding to the viewing field angle of the 
receiving equipment. Figure 3 presents the calculated 
scattering phase functions at different incidence 
angles. 

 

 

Fig. 3. Scattering phase functions of the Sundog P12(ϕ) at 
different incidence angles. Solid lines correspond to the 
main path, and the dashed line shows the scattering phase 
function for the accompanied path (multiplied by 100) at a 
zenith incidence angle of 75°. 

 

Remind that the calculated phase functions 
represent histograms with a step of 1°, which leads to 
the finite intensity value at the left boundary of the 
interval. As is seen, the Sundog brightness is 
maximal at sunrise or sunset. 

Under Sundog, we mean not only the intensity 
singularity at the left edge, but the whole phase 
function presented in Fig. 3. Just this function forms 
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the Sundog peak in a total scattering phase function 
in Fig. 2.  

Note that the number of collisions in photon 
paths forming the Sundog peak can be random, since 
the additional photon collision with crystal’s 
hexagonal faces does not change the path projection 
on the horizontal plane presented in Fig. 1b.  

The numerical calculations have shown that 
accompanied photon path, presented in Fig. 1b by 
the dashed line, makes an essential contribution to 
the right edge of the Sundog peak. Figure 3 presents 
the accompanied path phase function for the single 
incidence angle by dashed lines. The term “Sundog” 
combines both types of paths. Table 2 presents the 
Sundog weight coefficients c12. 

The third peak m = 3 in the scattering  
azimuth phase function is described analytically, like 
the first peak, by the Dirac δ-function: 
P13(ϕ) = Q1c13 δ(ϕ – 120°), and called the parhelion of 
120°. The appearance of this peak can be easily 
explained if to consider the auxiliary plane problem 
of photon reflection inside the random polygon. Let 
the photon with random incidence direction be 
reflected from two faces with an angle γ between 
them as shown in Fig. 1c. The photon deviation in 
this cease does not depend on turn of the polygon 
and is equal to ϕ = 2(180° – γ).  

For the case of hexagonal plate, the path is 
realized, when the photon goes into crystal through 
the top hexagonal face and goes out of crystal 
through the bottom hexagonal face after two 
collisions with vertical faces. Then, the paths shown 
in Fig. 1c, correspond to the horizontal component of 
the photon propagation direction. As a result, the 
paths form the fixed glowing point at an angle of 
120° (and at symmetrical angle of 240°) when turning 
the plate in the horizontal plane.  

Apart from the main paths (see Fig. 1c, solid 
line), two types of the accompanied paths contribute to 
the parhelion of 120°. One of them corresponds to the 
main path, but the number of collisions is increased 
here (see Fig. 1c, the dashed line). In the second type 
of the accompanied paths, light is transmitted through 
vertical faces. Since the contribution from the second 
type turned out to be essentially smaller than that of 
the first type, the second type of paths is not 
presented in Fig. 1. The weight coefficient ñ13 in 
Table 2 terms all these paths “parhelion of 120°.”  

The fourth peak m = 4 was not described earlier 
in the literature. It appears at large zenith angles 
near azimuth scattering angle of 150°. This peak is 
formed by the main and accompanied paths shown in 
Fig. 1d. Phase functions of these paths are presented 
in Fig. 4.  

 

 
Fig. 4. Scattering phase functions P14(ϕ) of main (solid line) and accompanied (dashed line) paths forming a peak of 150° at 
different zenith incidence angles θ0 = 45° (a), 55° (b), 65° (c), and 80° (d). 
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The appearance of a peak of 150° is accounted 
for the specific manifestation of the total internal 
reflection on paths with a greater number of photon 
collisions. Actually, let all the photon collisions with 
faces be carried out without total internal reflection 
for the given path. If at the crystal rotation on the 
path, there appears a total internal reflection from 
one of the faces, it is manifested itself as a sharp 
boundary, separating the regions with high and small 
intensities of the scattered light. Besides, there are 
scattering angle boundaries for each path induced by 
the geometry of particles, as we could see by the 
example of a Sundog. At photon collisions with a 
large number of faces, the integration of these 
boundaries leads to the narrow interval of angles, 
efficiently transmitting the radiation. Figure 4 
demonstrates this regularity. The total weight 
coefficient ñ14 for the peak of 150° is presented in 
Table 2. 

Thus, we distinguished all paths producing 
significant peaks in the total scattering phase 
function P1, the remainder m = 5 is more or less 
smoothly varying function of ϕ that is shown in 
Fig. 2 by the dashed line. The weight coefficient for 
the remainder ñ15 is presented in Table 2.  

4. The second  
(near-zenith/near-horizon) circle 

The second circle located in the forward 
hemisphere of scattering directions is mainly formed 
by paths with two collisions, when the photons pass 
through the wedge at an angle of 90°. Here at the 
hexagonal plate rotation, the edge of the plate 
rotates in the horizontal plane. Therefore, the 
maximal light transmission by the wedge occurs when 
the wedge rib is perpendicular to the incidence 
direction. In this case, the azimuth photon deviation 
is equal to zero and the scattering phase function at 
ϕ = 0 is maximal. This regularity is demonstrated in 
Fig. 5.  

For the near-horizon circle, such path begins 
from the vertical face; therefore, the maximal 
azimuth deviation of photons occurs at sliding 
incidence on the vertical face. Thus, the scattering 
phase function for such path differs from zero in the 
interval [0°, ϕmax], where for the right boundary of 
the interval, the following analytical expression can 
be obtained: 

 ϕ = − θ2

max 0arctan( 1/sin ).n   (11) 

The same path for the near-zenith circle starts 
from the top hexagonal face. The right boundary of 
angular interval [0°, ϕmax] occurs due to the total 
internal reflection on the vertical face. In this case, it 
is easily to obtain the following expression: 

 2

max 0arcsin( 1/sin ).nϕ = − θ   (12) 

 
à 

 
b 

Fig. 5. Scattering phase functions P2(ϕ) for the near-horizon 
(à) and near-zenith (b) circles for incidence angles of 15 and 
75°, respectively. The top line corresponds to the total 
scattering phase function, and the curve numbers specify the 
scattering phase functions of the given multiplicity of 
photon collisions. 

 

Our calculations have shown that no more than 
5% of energy falls on the path with a larger number 
of collisions in the second circle. Therefore, the 
contribution of these paths is of no practical interest 
from the point of view of integral parameters. As it 
follows from the scattering phase functions P2(ϕ) of 
the second circle, presented in Fig. 5, paths with a 
greater number of collisions fill, in general, the 
remaining interval of azimuth angles ϕ > ϕmax. As 
compared to the first circle, the second one has no so 
sharp peaks in the scattering phase functions. The 
peaks appear only in small in magnitude terms, 
which correspond to the greater multiplicities of 
photon collisions. These peaks in the parhelic circle 
are accounted for transmission truncation due to the 
total internal reflection and path geometry. 

5. The third (subparhelic) circle 

The third circle appears in the back hemisphere 
of scattering directions at a zenith angle of θ3 

= π – θ0. 
It is formed by the same photon paths as in the 
parhelic circle, but at additional reflection. 
Therefore, in the third circle, the same peaks as in 
the parhelic circle are observed. The calculated 
weight coefficients for the third circle are presented 
in Table 3. 
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Table 3. Weight coefficients c3m of peaks in the subparhelic circle for the plates with F = 0.1, 0.2, and 0.4 

Incidence angle θ0, degrees  Weight coefficient, % 
10 20 30 40 50 60 70 80 

 F = 0.1 
c31 (forward peaks) 98.2 95.9 94.8 77.8 65.7 62.3 58.9 63.4 
c32 (Sundog) 0 0 < 0.1 16.4 27.2 31.3 40.4 32.7 
c33 (parhelion of 120°) < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 0.2 0.2 
c34 (peak of 150°) 0 0 0 0 < 0.1 < 0.1 0.2 0.2 
c35 (remainder) 1.8 4.1 5.2 5.8 7.1 6.4 0.3 3.5 
 F = 0.2 
c31 (forward peaks) 96.4 93.2 91.4 76.9 70.7 42.4 50.1 58.8 
c32 (Sundog) 0 0 < 0.1 19.1 22.1 40.2 42 31.8 
c33 (parhelion of 120°) < 0.1 < 0.1 < 0.1 < 0.1 0.2 0.4 0.7 0.5 
c34 (ïèê 150°) 0 0 < 0.1 < 0.1 < 0.1 2.0 0.1 2.1 
c35 (îñòàòîê) 3.6 6.8 8.6 4 7 15 7.1 6.8 
 F = 0.4 
c31 (forward peaks) 93.3 81.3 74.5 66.8 48.9 48.2 47.7 53.2 
c32 (Sundog) 0 0 10.5 17.9 44.7 40.4 38.7 31.3 
c33 (parhelion of 120°) < 0.1 < 0.1 < 0.1 0.5 0.4 0.7 1.7 1.8 
c34 (peak of 150°) 0 < 0.1 < 0.1 0.4 0.7 3.7 3.2 5.1 
c35 (remainder) 6.7 18.7 14.6 14.4 5.3 7 8.7 8.6 

N o t e .  At an incidence angle of 90°, the parhelic and subparhelic circles are merged; therefore, the 
weight coefficients of peaks are presented in Table 2. 

 
The fourth circle bears no more than 0.1% of the 

scattered energy, therefore, it is beyond the practical 
interest. 

Conclusion 

When considering the scattering phase functions 
for the horizontally oriented hexagonal ice plates, the 
main attention is paid to those terms in the scattering 
phase function expansion (8) in the parhelic and 
subparhelic circles, which have a shape of narrow 
peaks (halos). Since the angular dependence of 
scattered radiation inside these peaks slightly 
depends on F of plates and light incidence angle, the 
scattering phase functions can be characterized only 
by the integral characteristics of these peaks. Such 
approach is justified, for example, when estimating 
the vertical radiation flows or when calculating the 
light multiple scattering, where the detailed angular 
distribution of scattered light has no principal 
importance. In other situations, when the scattered 
light measurements take place only at some fixed 
scattering angles, the given approach can be rough, 
in this case rather laborious calculations are required. 
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