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The dependence of the Ricatti–Bessel (RB) function of the 1st (RB1), 2nd (RB2), 3rd (RB3), 
and 4th (RB4) kinds of the real x and complex z = õ + iy arguments on their order � are studied 
analytically and numerically. The domains of RB function’s module increase with increase of �, 
tolerant to the forward-recurrence errors, and of module decrease, tolerant to the backward-recurrence 
one, are found out. The domain of stability of the forward recurrence for RB1 function at x >> 1  

is determined by the relation 0 ≤ � ≤ �max = x – 0.5 – 0.80861x1/3
 – 0.1635x–1/3

 on condition that 
⏐y⏐ ≤ 0.4logx + 0.5; here the fractional error of the forward recurrence increases with an increase of � 
proportionally to �1/2. If � > �max, the forward recurrence results in generation of the function equal 
to the sum of RB1 and RB2 functions instead of the function RB1. The fractional error of the 
backward recurrence for the RB1 function is virtually independent of � in the whole � range, 
increases by the |z|1/2 law with an increase of z modulus, and is comparable with the forward-
recurrence error at � = �max under the above limitations on y. To obtain the initial RB1 values in the 
backward recurrence, a simplified calculation procedure for the ratio of these functions of the 
neighboring orders with the use of a continued fraction is suggested, an additional forward-recurrence 
computation of the RB2 function at y = 0 or RB3 at y > 0, and the use of the Wronskian of the 
corresponding functions. A FORTRAN program for computing the above-mentioned ratio of RB1 
functions is presented. In the domains of stability, the main computation error of functions of decimal 
arguments can be determined by the error of their conversion into the binary computer system. 

 

Introduction 
 

Computation of parameters of electromagnetic 
radiation interaction with spherical particles is the 
grounds for atmospheric optics and is reduced to the 
summation of Mie series.1–3 Radial coefficients of 
these series are expressed in terms of Ricatti–Bessel 
functions of the first ψ�(z) (RB1) and second χ�(z) 
(RB2) kinds. Based on the performed investigations, 
a common computing recommendation is the use of 
forward recurrence for RB2 and backward recurrence 
for RB1 functions.3–9 However, we don’t know 
works with analytical proof of this statement, the 
lack of which casts some doubts on the accuracy of 
computation results. Thus, the double-precision 
forward recurrence is used in Ref. 3 for RB1 function 
of the real argument, which, in the authors’ opinion, 
does not insure against large computation errors in 
the uncontrollable region � >> x. The authors specially 
warned against computing the function ψ�(z) in 
unstudied regions � – z. 

In this work, the errors of RB function recursive 
computation are estimated and the domains of 
stability of recurrence procedures are deduced. These 
domains are determined from the analysis of RB 
function properties. A technique for simultaneous 
computation of RB1 and RB2 functions is suggested. 
To initialize the backward recurrence, a simplified 
continued-fractions scheme is worked out for 

computing the ratio of RB1 functions of neighboring 
orders and the use of the Wronskian for generating 
the functions. The newly suggested algorithms are 

numerically tested. The text of a FORTRAN 

subroutine for the RB1 function ratio computation is 
given in the Appendix. 

 

1. Basic relationships 
 
In the Mie theory,1–3 the RB functions of the 

first ψ�(z) and second χ�(z) kinds are used, which are 
two independent solutions of the differential equation4 
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Another pair of independent solutions is the 

functions η�(z) (RB3) and ζ�(z) (RB4) defined by the 
equations 
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 ( ) ( ) – ( );z z i zη = ψ χ� � �   (4) 

 ( ) ( ) ( ).z z i zζ = ψ + χ� � �   (5) 

Recurrence relations between functions of different 
orders have the form 

 1 1

2 1
( ) ( ) – ( ),z z z

z
+ −

+
Φ = Φ Φ� � �

�
 (6) 

 1( ) ( ) – ( ).z z z

z
−

′Φ = Φ Φ� � �

�
 (7) 

The Wronskian of two independent functions ψ�(z) 

and χ�(z) is 

 ( , ) ( ) ( ) – ( ) ( )W z z z z′ ′ψ χ = ψ χ ψ χ =⎡ ⎤⎣ ⎦� � � �  

 1 1( ) ( ) – ( ) ( ) 1.z z z z
− −

= ψ χ ψ χ =⎡ ⎤⎣ ⎦� � � �  (8) 

For further use the Wronskian expressions of the 
following pairs of functions are helpful: 

 1 1( , ) ( ) ( ) – ( ) ( ) – ,W z z z z i
− −

ψ η = ψ η ψ η =⎡ ⎤⎣ ⎦� � � �  (8a) 

 1 1( , ) ( ) ( ) – ( ) ( ) .W z z z z i
− −

ψ ζ = ψ ζ ψ ζ =⎡ ⎤⎣ ⎦� � � �  (8b) 

RB functions at integer � are expressed in terms 
of trigonometric functions, in particular: 

 0 1( ) – ( ) sin( ),z z z
−

ψ = χ =  

 1 0( ) – ( ) cos( ),z z z
−

ψ = χ =  

 1 0( ) ( ) exp( ),z i z iz
−

η = η =  

 1 0( ) – ( ) exp(– ).z i z iz
−

ζ = ζ =  (9) 

Equations (9) along with Eq. (6) allow the forward 
recurrence generation for computing RB functions for 
integer � ≥ 1, used in the Mie series. Equations (6) 
are used for the backward recurrence generation as well, 
but the choice of initial values in this case is more 

complicated. The review and realization of different 

schemes of the backward recurrence generation are 

given in Refs. 5–10. The ratio of functions of two 

neighboring orders 
Φ

−= Φ Φ� � �1( ) ( ) ( )R z z z  is of great 
importance here; the forward and backward recurrence 
relations for this ratio follow directly from Eq. (6) 
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2. Estimation of the errors  
of recurrence procedures 

 
To estimate the errors in computation of RB 

functions, consider the ratio of R�(z) functions, since 
it depends only on single magnitude of a neighboring 
order while the functions themselves depend on two 
functions of two neighboring orders. In this case, 
analytical relationships for the recurrent process 

errors can be obtained. Introduce the fractional error 
g� of calculation of the ratio of R�(z); in this case the 
computed value ( )R z�

�

 is represented in the form 

 (1 ).R R g= +� � �

�

 (11) 

Substituting Eq. (11) in Eq. (10b) and neglecting 

the error of +�(2 1) z  computation, we obtain 
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A similar relation was obtained in Ref. 8 and used 
to validate the necessity of backward recurrence for 

( )R z
ψ

�
 at complex z. Applying Eq. (12) k times and 

carrying out necessary cancellations, we obtain 
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 g�+1 … g� << 1. (13) 

Equations (12) and (13) are valid for estimating 
errors of both forward and backward recurrences. 
Note that these equations are not accurate, because 
errors of addition, division, and multiplication 

operations due to data storage limitation have not 
been taken into account when computing the equations. 
However, they allow a qualitative conclusion that the 
forward recurrence error should be damped in the 
domain of function module increase with � increase. 
It can be said that this reflects more general conclusion 
that any difference forward-applied equation is 
effective merely for computing “the largest” solution 
of this equation.7 Naturally, the domain of stability 
of the backward process is within the domain of 
function module decrease as � increases.  

It follows from the above that to chose the 
computation method, to chose a computation method 
it is necessary to know the qualitative dependence of 
FB functions on � in different ranges of complex z. 
Since the dependences of RB functions of real 
argument are simpler, first consider this case. 

 

3. Properties of RB functions  
of real argument 

 
The character of the dependences of RB 

functions on x at fixed � and on � at fixed x is 
described analytically and graphically in Ref. 4 and 
summarized below. At fixed � and x increasing from 
0 to the infinity, ψ�(x) first increases from 
infinitesimal quantities, defined by the first term of 
series (2), to the values greater than unit in the first 
maximum, determined by the first zero of the first 
derivative ,1,′ψ�  then passes through the first zero of 
ψ�,1, and again oscillates near the x axis approaching 
the harmonic x-dependence with the amplitude 
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tending to unit. Asymptotic decomposition of 
,s

ψ�  
zeros for large � is given in Ref. 4, and for 

,s
′ψ�  was 

obtained by the author in Ref. 11. At large �, ψ�(x) 
in the first maximum approximately equals to4 

 ( ) ⎛ ⎞′ψ ψ ≈ +⎜ ⎟
⎝ ⎠

� � �

1 6

,1

1
0.8458 .

2
 (14) 

While x is rising from 0 to the infinity, χ�(õ) 
first decreases from the infinitely large quantities, 
defined by the first term of series (3), to the first 
zero of ,1,χ�  passes through the first maximum of the 
absolute value, determined by the first zero of the 
derivative ,1,′χ�  and again oscillates near the x axis 
with the amplitude converging to unit and the phase 
π-shifted relative to the phase of ψ�(x). The value of 
χ�(õ) in the first maximum of the absolute value at 
large � is described by a similar dependence 

 ( ) ⎛ ⎞′χ χ ≈ +⎜ ⎟
⎝ ⎠

� � �

1 6

,1

1
–0.7184 .

2
 (15) 

While x is rising from 0 to the infinity, the 
modules of η�(õ) and ζ�(õ) decrease monotonically 
from the values, defined by the first term of 
series (3), to unit. 

With fixed x and rising �, ψ�(x), being in this 
case a continuous variable, oscillates with an increasing 
amplitude, attains its maximum at the point 

max 1
,

′ψ ψ
= =� � �  determined by the relation ( ) 0,

s

x′Ψ′ψ =
�

 
and again tends to zero like the first term of a 
series (2). Computational investigation of the 

dependence 
max

( )xψ
�  on the base of the dependence 

,s
′ψ�  [Ref. 11] results in the equation 

 −ψ
=�

1 3 1 3

max

1
( ) – – 0.808616 – 0.1635 ,

2
x x x x  

 ′≥ ψ ≈�,1 2.74.x  (16) 

The similar equation for the first zero of the 
function has the form 

 −ψ
= +�

1 3 1 3

1

1
( ) – –1.855757 0.1146 ,

2
x x x x  

 ≥ ψ ≈�,1 4.49.x  (17) 

For further study, it is useful to know also the 
dependence 

1
( ),x

χ
�  defined similarly. The following 

equation is obtained from the numerical analysis: 
 

 −χ
= +�

1 3 1 3

1

1
( ) – – 0.931577 0.0256 ,

2
x x x x  

 ≥ χ ≈�,1 2.80.x  (18) 

Similar procedure for max 1
( )x
′χ χ

=� �  results in the 
equation 

 −χ
= +�

1 3 1 3

max

1
( ) – –1.821090 0.03045 ,

2
x x x x  

 ′≥ χ ≈�,1 4.48.x  (19) 

According to the stated above, the following 
computation scheme for ψ�(x) of real argument, 
optimal in view of minimum errors, is emerged: 
forward recurrence is used for max

ψ
≤� �  and backward 

one – for max

ψ
>� � . The question on domains 

separation for the complex z requires an individual 
study. Now consider the technique for computing 
ψ�(x) for arbitrary correlations between x and �. 

 

4. Technique for computing  
 RB functions of real argument 

 
Initial values of functions for backward 

recurrence were found out as follows. ψ

�
( )R x  are 

computed using continued fractions by the method12 
simplified as compared to the Lentz one in the way, 
described below; χ�–1(õ) and χ�(õ) for boundary 
values ψ

= >� � �maxb  are computed by the forward-
recurrence method. Then ψ�(x) is computed with 
Wronskian (6) by the equation 
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1
( ) ,

( ) ( ) – ( )
x

R x x x
ψ

−

ψ =
χ χ

�

� ��

 (20) 

and 1( ) ( ) ( )x x R x
ψ

−ψ = ψ� � �
 by definition. Note, that 

Equation (20) is free of errors when generating small 
value ψ�(x) at � = �b, because it is generated from the 
division of unit by a larger value.  

Errors of this scheme were computationally 
investigated using IBM PC with 24-bit floating-point 
representation. The main method was the comparison  
of single- and double-precision computations of the 

functions; FORTRAN language was used for the 
program. 

It was estimated at the first stage of comparative 
computations, how computation errors depend on 
whether the fractional part of the decimal argument 
x can be finally expressed in the binary system, used 
in computers. Note, that all integers are convertible 
to the binary system. At the same time, the number’s 
fractional part equal, e.g., to 0.1N (N ≠ 5, 10…), can 
be represented only in the form of recurrent dyadic 
fraction.13 The error of a number conversion from one 
system notation to another is called system-notation 
error. Maximal relative value of the error for the 
binary system is 

 
10 2

max 2 ,q
x

x

−

−

Δ
=  (21) 

where q is the number of bits using for mantissa. In 
our case, decimal maõ⏐Δx/x⏐10–2 = 6 ⋅ 10–8. According 
to the investigations, the errors of single-precision 
computations of all RB functions in the domain of 
recurrence stability (in case of non-representability  
of the argument in the binary system) are finally 
caused by the system-notation error and are defined 
by the equation 

 10 2.x
−

′ΔΦ = Φ Δ  (22) 

If the fractional part of x is binary representable, 
the only operation errors13

 finally manifest themselves, 
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the study of which is the aim of this work. We 
realized this case by setting the fractional part of x 
as 1/2n, where n is integer. An absolute error of 
computing the basic functions sinx and cosx in this case 
has no trends with x increase and does not exceed 
3 ⋅ 10–8

 in the studied range õ ≤ 104
 at a single precision. 

  At the second stage, the dependence of the error 
on the hierarchy of operations in Eq. (4) was examined. 
It is turned out that the computation result differs 
only in case when the value 1/x is generated before 
the beginning of a recurrence process and then serves 
as a multiplier. This variant requires 1.5-fold shorter 
time, because the division is the most time-consuming 
operation and in this case it is carried out only once 
before the recurrence cycle. In all other cases 
computation time and result in Eq. (4) are the same; 
computation errors are usually less than in the case of 
1/x generating. Hence, the study of errors of RB 
functions computation was mainly carried out with 
the operation hierarchy corresponding to Eq. (4). 

General regularities of the error in the ψ�(x) and 
χ�(õ) forward-recurrence comparative calculations for 

max

ψ
≤� �  and max

χ
≤� � , respectively, consist in the 

fact that with growing � the absolute error oscillates 
with weakly increasing amplitude from the values, 
pointed above for sinx and cosx, to those, defined for 
the both functions by one equation 

2 38( ), ( ) 2 10 ,x x x
−

Δψ Δχ ≈ ⋅� �  
max

,

ψ
≈� �  

max
.

χ
≈� �  (23) 

At further � increase, the absolute value of Δχ� 
sharply increases, but the fractional error remains 
virtually constant and its average value is described 
by the equation 

 −

Δχ χ ≈ ⋅� �

1 28
2.5 10 ,x  

1
,

χ
≥� �  (24) 

which well agrees with Eqs. (14), (15), and (23). 
  In the region max

ψ
>� � , fractional and even 

absolute errors of ψ�(x) computation begin to rise 
quickly with rising �. However, the value of 
Wronskian (8) remains equal to unit. This means 
that the computed value of ( )xψ�

�

 in this region is 
the sum 

 ( ) ( ) ( ),x x b xψ = ψ + χ� � �

�
 

max
.

ψ
>� �  (25) 

When x varies, both sign and value of b can 
change. The behavior of b for average values can be 
described by the following equation: 

 1 28
2 10 .b x

−

≈ ⋅  (26) 

Already at small � exceeding over 
max

ψ
� , the 

second term in Eq. (25) is determinative, i.e., the 
forward-recurrence calculated ( )xψ�

�

 is virtually 
proportional to χ�(õ) and the obtained R� is ( ).R x

χ

�
 

The obtained result, seemingly paradoxical, approves 
the above statement that any forward-applied 

difference equation is effective only in calculating the 
“greatest” solution of this equation.7 The increase of 
absolute [Eq. (23)] and fractional errors [which 
follows from the comparison of Eq. (23) with Eqs. (14) 

and (15)] in the domain of stability can be explained 
by the fact that damping Equation (13) only partially 
damps the operation errors; as a result, the calculation 
error is proportional to the square root of the number 
of operations. 

The absolute backward recurrence error was studied 

for �b, defined by the equation �b = õ + 4õ1/3
 + 8 which, 

according to Refs. 3 and 6, provides for proper 
summation of the Mie series; in this case, the 
fractional error of backward-recurrence calculation of 
ψ�(x) for the fixed x is virtually constant in the 
whole � range. Its dependence on x is approximately 
described by equation 

 1 28(3 5) 10 ,x
−

Δψ ψ ≈ ÷ ⋅� �  (27) 

which is closely agrees with those for the functions 
ψ�(x) at 

max

ψ
=� �  and χ�(õ) at 

max

χ
≥� � [see Eq. (24)] 

for the forward recurrence. The above statements are 
illustrated by Fig. 1, where absolute forward and 
backward recurrence errors for ψ�(õ) are shown for 
õ = 1000 (binary representable integer) and õ = 1000.1 
(the number, non-representable in the binary system); 
they are represented by the domains of their variability 
for 

max

ψ
<� � . 

 
10–3

10–4

10–5

10–6

10–7

10–8

200 400 600 800 � 

⏐Δψ�(x)⏐

1fw, 2bw

1fw, 2bw 
2fw, 2bw 

1bw

1fw 

 
Fig. 1. Absolute errors of RB1 functions calculation for 
õ = 1000 (curves 1) and õ = 1000.1 (curves 2) by the 
forward (curves 1fw, 2fw) and backward (curves 1bw, 2bw) 
recurrence methods. 
 

The position of 
max

ψ
=� �  is pointed out by the 

arrow. As is well seen, in case of binary representable 
numbers the forward recurrence gives a better 
precision for 

max
,

ψ
<� �  while the backward one – for 

max

ψ
>� � ; errors of both recurrence become equal near 

max
.

ψ
=� �  At the same time, the error of number 

conversion almost equalizes the errors of both 
recurrences in the range 

max
,

ψ
<� �  which exceed the 

computation error for the case, shown in Fig. 1, by 
more than an order of magnitude. Sharp increase of the 
error at 

max

ψ
>� �  is caused by the recurrence process 

change to generation of a function proportional to χ�(õ). 
 

5. Properties and errors  
of the technique for computing  

RB functions of complex argument z 
 

When describing properties of RB function of 
complex argument, restrict ourselves by the region 
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0 ≤ θ = argz ≤ π/2, since in other sectors RB functions 
are expressed through functions of this sector via 

complex conjugation or sign change. Thus, 
ψ = ψ� �

*( *) ( )z z  and ( *) ( ) .z zη = ζ� �  We use two 
equivalent complex-number notations z = x + iy = 
= r(cosθ + isinθ). In the latter, r is the modulus and 
θ is the amplitude of complex number. 

It follows from RB functions in the form of 
series (2) and (3), that the dependence of the 
functions modules on the argument modulus at � >> r 
should be similar to those for real argument. At the 
same time, as it follows from Eq. (9) for RB functions 
at � = 0, the modules of these functions at small � 
have exponential dependence on y: 

 0 0( ) ( ) exp( )/2,z z yψ = χ =   (28à) 

 0( ) exp(– ),z yη =  (28b) 

 0( ) exp( ).z yζ =  (28c) 

The functional dependence at intermediate values 
of � defies simple analysis and can be obtained from 
numerical computations. Examples of such computations 
for x, y = 10 are given in Ref. 14, where the domain 
of forward recurrence applicability is analyzed when 
using single, double, triple, and quadruple precision. 
  In this work, the computation results of � -
dependence of the RB1 function for r = 10 and several 
values of the amplitude, shown in Fig. 2, illustrate 
the function behavior at large values of its argument. 
 

θ = π/4

– 3π/16

– π/8 

– π/16 

– 0 

10–3 

10–2 

10–1 

100 

101 

102 

103 

0 4 8 12 16 �

⏐ψ�(r = 10)⏐ 

 
Fig. 2. Dependence of the RB1 function module on � at 
r = 10 and different amplitudes θ. 

 

The markers correspond to the calculated values 
at integer �, while solid curves, connecting the 
marked points, represent RB1 values at intermediate 
�. The arrow points to the � value, at which RB1 
attains its maximum at real argument, i.e., 

max

ψ
� (10 + i ⋅ 0) = 7.68. Sharp RB1 function decrease 
is observed with the order increase, which, according 
to the above consideration, rejects the forward 
recurrence applicability at large θ. The behaviors of 
RB1 and RB2 at large r and small θ is shown in 
Fig. 3 and those of RB3 and RB4 – in Fig. 4. 

⏐ψ�(1000, y)⏐ 

200 400 600 800 �

1

0

2

3

4

y = 1

2 

3 

 
a 

 ⏐χ�(1000, y)⏐ 

200 400 600 800 �  

1

0

2

3

4

5

2
3 

y = 1

 
b 

Fig. 3. Dependences of the modules of RB1 and RB2 
functions on � at fixed õ = 103 and different ó. The arrows 
correspond to the values of 

max

ψ
�  and 

max

χ
�  for õ = r 

according Eqs. (16) and (19), respectively. 
 

 10 ⏐η�(1000, y)⏐ 

200 400 600 800 � 

1

2

3

y = 0 
1

0,1

0,01
0

 
a 

 ⏐ζ�(1000, y)⏐ 

200 400 600 800 � 

1

2 

3 

y = 0

10

8

6

4

2

0
  

b 
Fig. 4. Dependences of the modules of RB3 and RB4 
functions on � at fixed õ = 103 and different ó (the values 
are near the curves). 
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In view of oscillating character of RB1 and RB2, 
the shading in Fig. 3 points to the ranges of their 
modules. It is seen that the oscillation amplitudes of 
RB1 and RB2 decrease with the increase of the 
arguments, while their average values increase. The 
above-noted behavior of the functions at small 
[execution of Eq. (28)] and large (the same dependence 
at fixed r) values of � is evident. In particular, the 
module maximum slightly changes at 

max

ψ
�  and 

max
,

χ
�  

defined by Eqs. (16) and (19), respectively, when 
changing x to r. Equaling Eqs. (28à) and (14), 
obtain the condition of equality of the RB1 module 
at points � = 0 and 

max
,

ψ
=� �  which determines the 

limiting point of the forward recurrence stability at 

max

ψ
≤� � : 

 0.4log 0.5.y x≤ +  (29) 

There is a decrease of the function module for 
RB3 and an increase – for RB4 with an increase of the 
imaginary part of z. It is seen from Fig. 4b, that the 
RB4 module at y > 0 has the minimum near � = x, 
the depth of which increases with the increase of y. 
Hence, taking Eq. (13) into account, the conclusion 
can be drawn that the forward recurrence is unstable 
for this function. The RB3 module monotonically 
increases with an increase of � for all y ≥ 0 (see 
Fig. 4a), therefore, the forward recurrence for the 
function η�(z) at 0 ≤ argz ≤ π/2 is to be stable. 

Numerical check has shown that the behavior of 
the absolute value of forward-recurrence fractional 
error for this function weekly depends on θ and 
virtually repeats the regularities of errors’ behavior 
of the RB2 function of real argument. Hence, to 
obtain ψ�(z) for large � at the known ( )R z

ψ

�
, it is 

necessary to use Eq. (8a), which results in the 

following equation: 

 
1

–
( ) .

( ) ( ) – ( )

i
z

R z z zψ

−

ψ =
η η

�

� ��

 (30) 

The examples of errors of forward and backward 
[with the use of Eq. (30)] recurrences are shown in Fig. 5. 
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Fig. 5. Module of the fractional error of RB1 function 
computation as a function of � at õ = 1000 and different y 
for the forward (solid curves, numbers of which correspond 
to the values of y) and backward (shaded area) recurrences. 
 

The numbers of curves for the forward 
recurrence correspond to the values of y. The errors 

of backward recurrence for the same y are in the 
shaded horizontal area. The following regularities of 
the behavior of forward and backward recurrence 
errors, when computing RB1 functions of complex 
arguments, are revealed from Fig. 5 and computations 
for other values of z and �: the backward recurrence 
error at fixed z is almost constant for all �, weekly 
depends on θ, and is within the limits 
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( )
1 2–8(3 6) 10 ;

z

r

z

Δψ
= ÷ ⋅

ψ

�

�

 0 ,
2

π
≤ θ ≤  ≤� �b.  (31) 

This equation actually includes Eq. (27), obtained 
for real arguments. Under fulfillment of Eq. (29), 
the forward recurrence gives smaller error for ψ

<� �
max

 
which equalizes with those for backward recurrence 
at 

max
.

ψ
=� �  This boundary shifts to the left as y 

increases. Analytical relations for this case are not 
obtained in this work; this has been done in Ref. 14. 
At the end of this part note, that all conclusions 
about the stability of the recurrences for the RB1 
functions directly relate to the functions ratio; the 
procedure for which is described below. 

 

6. The choice and grounds  
for the algorithm of computing  

the RB1 functions ratio 
 
To find the initial values ψ�–1(z) and ψ�(z) or 

their ratio, series (2) can be correctly used only under 
condition 

 
2

2 ,z>�  (32) 

when its terms decrease in absolute magnitude. At a 
smaller �, the series’ terms first increase in absolute 
magnitude up to values much greater than unit, 
therefore the value of sum in square brackets in 
Eq. (2) is determined by the difference of values 
much greater than the difference itself. The Taylor 
series’ terms for the ratio can be obtained by division 
of the series for ψ�–1(z) and ψ�(z) and have the form 
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As is seen from the consideration of series (33), 
its convergence is better than of series (2). The 

condition of correct computation of the series is the 
inequality 

 2 .z>�  (34) 
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The difficulty of its use is in the absence of 
analytical form for the consequent terms. At the same 
time it is known10 [and it directly follows from 
Eq. (10b)] that the backward recurrence for R� is 
equivalent to the infinite continued fraction, usually 
written in the form15 

 1

0

2
1

3
2

3

( ) ,
b

R z a
b

a
b

a
a

= +

+

+

+

�

�

 (35) 

where 

 
2 2 1

;k

k
a

z

+ +

=

�
 –1.kb =  

The recurrent equations for continued fractions 
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;
n n n n n

n n n n n
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 (36) 

with the initial conditions 

 0 1,b =  2 0,P
−

=  1 1,P
−

=  2 1,Q
−

=  1 0Q
−

=  

define the numerator and denominator of the 
irreducible nth convergent fraction 

 δ =
n n n

P Q  (37) 

which is equivalent to the finite continued fraction 
free of all terms with k > n; the difference of two 
neighboring convergent fractions is defined by the 
equation 
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1

1

1

(–1) ...
– .

n

n

n n

n n

b b

Q Q

−

−

−

δ δ =  (38) 

One of the criterions for δn convergence to a 
finite limit at n → ∞ for real bn and an (an is positive) 
after some n0 is satisfaction of inequalities15 

 – 1,
n n

a b ≥  0.n n>  (39) 

As it follows from Eq. (39), continued 
fraction (35) converges for real arguments, since 
( 1)k x+ +�  always becomes greater than unit with 

increasing k, i.e., conditions (39) is satisfied. In this 
case, the question arises about the ratio of which 
functions Eq. (35) converges to, because Eqs. (35)–
(39) formally take place for any Ricatti–Bessel 
functions. To answer this question, compare the first 
terms of series (33) for ( )R z

ψ

�
 and of the series 

obtained from division of the multiplier Pn(z) by 
Qn(z). To do this, write the expressions for Pn(z) and 
Qn(z), obtained from Eqs. (35) and (36): 
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 (40) 

With an increase of the order of convergent 
fractions, Eqs. (37) and (40) evidently describe more 
and more terms of series (33). Hence, it may be 
concluded that infinite fraction (35) converges to 

( ).R z
ψ

�
 To clarify the convergence character, 

substitute bn = –1 into Eq. (38): 

 , , 1

1

1
– – .

n n

n n

R R
Q Q

−

−

=� �  (41) 

It is seen from Eq. (36), that at x ≤ 2(� + k + 1) all 
Qn > 0, i.e., the difference between two neighboring 
convergent fractions is negative. This means that the 
sequence 

,n
R�  monotonically decreases with increase 

of n. The difference between R� and 
,n

R�  with 
accounting for Eq. (41) is expressed in the form 

  1
,
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If n + � > z, the ratio 2n k n kQ Q
+ + +

≈ 1/4 and the 
sum in parenthesis in Eq. (42) approximately equals 
to 4/3, according to the expression for the sum of 
geometric progression. Therefore, the product QnQn+1, 
obtainable from recurrent computation of numerators 
and denominators of convergent fractions, can serve 
for formulating the criteria of the recurrent process 
termination. Hence, in the worked out algorithm for 
computing R

ψ

�
 by Eqs. (36) and (37), which is 

realized for real arguments in the single-precision 
subroutine RPSIRE (see the Appendix), the following 
criterion of the recurrent process termination was used: 
 

 1 .k kQ Q C
−

≥  (43) 

To assess C, note that Rψ

�
 changes from �/õ ≈ 1 

at 
1

′ψ
=� �  to (2� + 1)/õ at � → ∞. Hence, to obtain 

seven true digits, we can choose C = 106. Numerical 
study of C by means of comparison of single- and 
double-precision computations of Rψ

�
 for x ≤ 105 and 

1 ≤ � ≤ õ + 50 has shown, that this value of C is 
sufficient, since at its further increase the accuracy of 
single-precision computations of ψ

�
R  does not 

enhance. It also follows from the study of results, 
that the number of recurrence rounds for the chosen 
C is well described by the equation 
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1 3
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–0,5 – , ,
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The above equation answers the question on the 
choice of initial values n in the Miller algorithm 
(Ref. 4, p. 270), where ψ�+n+1(z) is equal to zero and 
ψ�+n(z) – to unit. As it follows from the comparison 
of Eqs. (6) and (35), this algorithm is actually 
equivalent to the direct calculation of the n-convergent 
continued fraction. Therefore, for 24-bit computers n 
in the Miller algorithm should be equal to k from 
Eq. (44). But there is no need in the Miller algorithm 
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for ψ�(z) due to the new algorithm, suggested in this 
work. The advantage of the new algorithm is automated 
determination of k; the computation of RB3 function 
is comparable in amount of operations with the 
computation of the series when normalizing in the 
Miller algorithm. 

In the Lentz algorithm,12
 the procedure of 

convergent fractions computation includes the recurrent 
computation of the ratios 

 RPk = Pk/Pk–1 and RQk = Qk/Qk–1, 

which are easily obtained from Eq. (36) and, 
therefore, are not given here. The next convergent 
fraction results from the preceding one: 

 1 .

k
k k

k

RP

RQ
−

δ = δ  (45) 

In this case, the recurrence termination criterion 
is the equality of RPk and RQk with the computer 
accuracy. Note, than one additional operation of 
multiplication or division takes place at each step of 
this procedure, which increases the computation time. 
There is a probability of division by zero in this 
algorithm, which is excluded in Ref. 12 by a special 
procedure. To compare the RPSIRE subroutine with 
the Lentz algorithm, a corresponding program was 
written without the above procedure for excluding 
division by zero. It turned out, that the equality  
of RPk and RQk can not be satisfied when the 
program12 running, therefore the equation 

 ≤ ε
–k k

k

RP RQ

RQ
 (46) 

was used to stop the recurrence process.  
A lowest error at single precision was provided by 

ε = 10–6. In this case, the number of recurrences and 
computation error virtually equaled to those for RPSIRE 
at C = 106, however, the computation time, averaged 
over the range x = 10÷1000, was twice as shorter. 

 

Conclusion 

 

The analytical study and numerical results 
confirm the general stability principle of difference 
schemes to obtain solutions increasing at their 
application. According to this principle, absolutely 
stable for the forward recurrence are the functions 
χ�(x) of real and η�(z) of complex arguments and the 
functions ψ�(x) of real argument up to 

max
,

ψ
=� �  

defined by Eq. (16). With further increase of �, the 
recurrence becomes absolutely unstable and results in 
generating the sum of ψ�(x) and χ�(x). The backward 
recurrence for ψ�(x) is absolutely stable at 

max

ψ
>� �  

and relatively stable at 
max

.

ψ
<� �  In case of complex 

argument, the backward recurrence stability increases 
throughout the � range. 

When using recurrence procedures in the domains 
of stability, the basic computation error of functions 
with decimal arguments occurs due to errors of 
arguments conversion to the binary system. 

To obtain the initial values for the backward 
recurrence, we suggest to use the ratio RPSI = 
= ψ�–1(z)/ψ�(z) and the forward-recurrence computed 
χ�(õ) or η�(z). With the use of Wronskians, this 
results in Eqs. (20) and (30). To compute RPSI, the 
continued-fractions procedure is effective, the 

simplified scheme of which is justified and given in 
the form of subroutine in this work. 

 

APPENDIX 
 
The subroutine RPSIRE (ratio psi real E) serves 

for computation the Ricatti–Bessel function of the 
first kind RPSI = ψ�–1(z)/ψ�(z) for real arguments. 
Change to complex arguments is carried out by 
simple redescription of variables, at which Eq. (43) 
remains valid. Input parameters of the subroutine are 
the order L and the value x, output one is the value 
of RPSI function. 

 
SUBROUTINE RPSIRE(L,X,RPSI) 
DX=2./X 
W=(L+0.5)*DX 
P2=1. 
P1=W 
Q2=0. 
Q1=1. 
DO 1 K=2,9999 
DX=–DX 
W=DX–W 
P=W*P1+P2 
Q=W*Q1+Q2 
IF(ABS(Q*Q1).GE.1.E+6) GO TO 2 
P2=P1 
Q2=Q1 
P1=P 
1 Q1=Q 
2 RPSI=P/Q 
END 
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