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The formulation of concepts of classical and quantum potentials within the semiclassical 

representation is given, their role in the line wing theory is described, the classic character of the 
intermolecular interaction potential appearing in thermodynamic coefficients is shown. The temperature 
dependence of the absorption coefficient in the CO2 and H2O line wings and the temperature behavior 
of the second virial coefficients of these gases are discussed. 

 

1. Method of semiclassical 
representation 

 

Method of semiclassical representation1
 is 

effective for problems of a definite type. There are 
two interacting subsystems (and the interaction can 
not be ignored): essentially quantum and classical. 
This can be exemplified by the problem on collisional 
line profile in a gas spectrum (see details in Ref. 2). 
The first subsystem here is intramolecular degrees of 
freedom of interacting molecules and the second one 
is their centers of mass. 

It is easier to explain an idea of the method 
assuming that the problem of contour is already 
reduced to the binary variant. An exact Hamiltonian 
in this case is 

 1 2( ) ( ) ( ) ( , , ),H H x H y K q U x y q= + + +  (1) 

where Í1(õ) is the Hamiltonian of quantum degrees 
of freedom of x, directly interacting with the 
molecule field; Í2(ó) is the same for a “buffer” 
molecule; K(q) is the operator of kinetic energy of 
the centers of mass q; U is the Coulomb potential of 
the intermolecular interaction. The evolution 
operator is presented as  

 S = BCQ. (2) 

Here C designates the evolution operator for the 
Hamiltonian 

 = + +1 2( ) ( ) ( , , ),H H x H y U x y q  (3) 

which determines the deformation of quantum states 
of the molecules, centers of mass of which follow the 
(multidimensional) classical trajectory q(t), where t 
is the time. Hamiltonian of an equation for B(q) is 
constructed so that corresponding matrix elements 

are calculated via the solution of classical problem 
with the potential V, which should regulate the 
dynamics of centers of mass. The operator Q corrects 
such separation of variables. Pragmatic efficiency of 
the method is to be secured by the closeness of ⎜⎜ Q⎟⎟  
to unit. This absolutely natural fact leads to the 
problem of the corresponding rational choice of V(q), 
which turns out to be correlated with the quantum 
mean U by the Gibbs statistical matrix R with the 
Hamiltonian H and, hence, the parameters of V turn 
out to be dependent on the temperature Θ. 

It is already evident, that two characteristics of 
an intermolecular interaction are to appear in the 
problem of two interacting subsystems with 

Hamiltonian (1), i.e., the quantum potential U at 
q → q(t) and the classical potential V. The sense of 
these terms is clear from interpreting the multipliers 
in Eq. (2). 

One more essential element of the method is the 
possibility to transfer the Q problem to statistical 
part of the task, varying the statistical matrix in 
standard way when calculating quantum means, finally 
resulting in the equation for the statistical matrix in 
classical limit for the dynamics of centers of mass: 
 

 ρ = ρ1ρ2G, (4) 

where ρ1 and ρ2 are the Gibbs statistical matrices for 

Í1(õ) and Í2(ó); G is the Boltzmann multiplier with 
the potential V. 

 

2. Second virial coefficient  
and line profile in wing 

 

Direct calculation of the classical potential V is 
a complicated problem, but there is a workaround, 
based on a correlation of the classical potential with 
thermodynamic gas parameters (virial coefficients, 
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constants of transfer processes description, etc.). 
Participation of the classical potential in equations for 

thermodynamic parameters is the direct consequence of 
applying the method of semiclassical representation 
to corresponding equations of statistical physics. 

The virial coefficient expressed via V immediately 
follows statistical sum calculating by Eq. (4). 
Transfer constants are calculated via quantum means 
of the operators dependent only on q, and further 
application of Eq. (2) leaves the only dependence on 
V (after mention the Liuville theorem). 

Asymptotic assessment of the quantum correlation 
function of dipole moment along with the method of 
semiclassical representation allow the periphery of 
spectral line profile to be described in the form2 

 
– ( )/

2 2
0

1 e
( ) d

–

sr V r kT

D r r
r r r

κ ω ∫∼

�
�

 (5) 

with an accuracy to known multiplier κ(ω) being  
the ω-radiation absorption coefficient of ω0-centered 

spectral line; 0( , )r ω ω�  is the root of equation  

E′′ – E′ = —ω, where E′′ and E′ are the eigenvalues 
of Hamiltonian (3), corresponding to the spectral line 
(— is the Planck constant). As it follows from the 
definition, an explicit view of Eq. (5) determines the 
quantum potential. When V is considered as central 
(k is the Boltzmann constant), q → r is the distance 
between molecules; D depends (in a sufficiently 

complicated way) on all the Hamiltonians participating 
in the problem. An applicability condition of Eq. (5) 
is ⏐ω – ω0⏐ >> γ, where γ is the line halfwidth. 

Calculation of D and r�  supposes preliminary 
solution of the Lippmann–Schwinger equation with 
all quantum details, which is hardly possible with an 
acceptable spectroscopic accuracy. Therefore, Equation (5) 
is interpreted as an approximation equation, allowing 
classical and quantum potentials to be restored from 
experimental values of absorption coefficients. Details 

of the solution of the corresponding inverse problem 
are thoroughly discussed (and illustrated) in Refs. 2–4 
(and their references). 

The above facts give a possibility to compare 
values obtained in independent experiments, i.e., the 
classical potential of intermolecular interaction, 
determined from the temperature dependence of  
the second virial coefficient, and spectral data on 

absorption coefficients at different temperatures. The 
quantum potential U in the last case is considered as 
temperature independent. In addition, the integral 
multiplier in Eq. (5) essentially determines the 
dependence of absorption coefficient on the 

temperature and pressure. 
 

3. 4.3 µm band of ÑÎ2 
 

The classical potential V for ÑÎ2 molecule at a 
standard temperature was approximated by the Lennard–
Jones potential with parameters, thermodynamically 
measured at this temperature.5 Parameters of the 
quantum potential at a given classical potential was 

recovered in Refs. 2–4 from the measured6,7 absorption 
coefficient in a wing of the 4.3 μm band. The quantum 
coefficient was further considered as invariable; 
parameters of the classical potential were found from 
experimental values of absorption coefficients at 
other temperatures, thus being temperature dependent. 
Further, using the classical potential obtained from 
the analysis of absorption coefficient in line wings, 
the second virial coefficient was calculated: 
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The obtained temperature dependence of the virial 
coefficient is shown in Fig. 1 together with experimental 
data on this parameter. Figure 2 shows the quantum 
potential. 
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Fig. 1. The second virial coefficient, calculated with the 
classical potential of intermolecular interaction, obtained 
from the data on ÑÎ2 absorption coefficient in the 4.3 μm 
band, in comparison with the experimental12–14 data. 
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Fig. 2. Approximations of the quantum potential of 
interaction ΔE ∼ Δω = (C/R)a, used in calculation of CO2 
absorption coefficient near 4.3 μm. 

 

4. 8–12 µm range  
in the water vapor spectrum 

 
Available potentials, tested in Ref. 8, did not 

give a good description of absorption coefficient in 
terms of the quasistatic variant of the line wing 
theory. Therefore, new parameters of the quantum 
potential8 U(r, Ω) (Ω are the angular variables 
characterizing molecule orientation), specified in 
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analytical form, were found from the condition of 
proper description of experimental data on H2O 
absorption coefficient within a range 300–1100 cm–1 
at T = 296 K. This potential was used in Ref. 8 for 
calculation of the second virial coefficient. 

Note, that our actions according to the scheme, 
described in Section 3, have resulted in the classical 
potential, which does not allow data description  
by temperature dependences of the second virial 
coefficient (Fig. 3). The reason can well be an 
additional physical factor, existing for the wing of 
the H2O molecule rotational band,2,15 i.e., the effect 
of spatial dispersion of the imaginary part of 
dielectric permittivity, which is of high interest. 
Changes appear already in the definition itself of the 
absorption coefficient and result in the additional 
multiplier Φ(ω) in Eq. (5). 
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Fig. 3. The second virial coefficient for water vapor as a 
function of temperature: × corresponds to calculated data 
from Ref. 8; • is the data,9 calculated with the temperature 
dependent Lennard–Jones potential; ∗ and ο correspond to 
experimental data from Refs. 10 and 11; _____ is the data, 
calculated by the scheme from Section 3. 
 

In other words, the data on potentials of 
intermolecular interactions are to be obtained by the 
previous scheme, but from the function κ/Φ. 
Unfortunately, the present model15

 ensures only rather 
qualitative elements Φ. The question of whether some 
information about this value can be found is of 
interest as an argument for existing of the discussed 
effect itself. 

The only qualitative analysis is oriented to the 
most common model elements. According to the model, 
the additional multiplier Φ → 1 with the temperature 
decrease; therefore, being determined at the lowest 
“experimental” temperature and with V from the 
virial coefficient, it is expected to be the closest to 
the real one. If then to calculate with such Φ the 
absorption coefficient (5) at a higher temperature 
(with the corresponding V), then Φ can be presented 
as the ratio of the experimental absorption coefficient 
to the previous estimate. According to the model,  
Φ < 1. This is demonstrated by curve 1 in Fig. 4. 

As an alternative variant, quantum potential is 
obtained from the absorption coefficient at a high 
temperature, which gives curve 2 in Fig. 4. In fact 

this evidences an essential role of the quantum 
potential, that is not surprising, as it formalizes the 
Fermi golden rule. 
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Fig. 4. Φ definition in the absorption coefficient due to the 
effect of spatial dispersion of the imaginary part of 
dielectric permittivity as the ratio of experimental and 
calculated absorption coefficients, obtained at 296 and 
430 K at different quantum and classical potentials. 

 
Return to the “spectroscopic” second virial 

coefficient (considering the 8–12 μm range) for water 
molecules, calculated in Ref. 8. The used method 
virtually ignores the difference between quantum and 

classical potentials: when calculating 0( , )r ω ω�  analog, 

the model potential is selected so that to describe the 
spectral (throughout the considered range) absorption 
coefficient for 296 K, and then the same potential is 
used both in the Boltzmann multiplier and in 
constructing the temperature dependence of the 
second virial coefficient. This dependence is in a good 
agreement with data for sufficiently high temperature, 
but has some noticeable difference with those for the 
“initial” temperature 296 K (see Fig. 3). 

The results of Ref. 8 are quite interesting in a 
(possibly) some unexpected sense. The analysis of the 
used resolvent conversion method from the viewpoint 
of mathematically exact perturbation theory convinces 
that its use is virtually equivalent to classical 
description of the molecule rotation. A relative success 
of Ref. 8 can be evident of possible efficiency of such 
approximation in the theory of rotational lines profile. 
 

Conclusion 
 
The method of semiclassical representation, being 

valuable for the theory of periphery of spectral line 

profile, is applicable for calculation of thermodynamic 

parameters of a medium. This fact allows a discussion 

of a correlation between spectroscopic and 

thermodynamic parameters, comparing results of 
completely independent experiments. In its turn, this 
gives, firstly, a good chance to test approximations of 
the theory of line profiles and, secondly, to 
essentially simplify calculations for recovering the 
classical potential from the temperature dependence 
of the second virial coefficient, using the classical 
approximation for rotational degrees of freedom when 
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constructing the quantum potential of intermolecular 
interactions.  

Qualitative indications of spatial dispersion of 
absorption coefficient in the atmospheric “transparency 
window” are also important. Such effect, as is 
ascertained from Refs. 2 and 15, results in local 
thermodynamic imbalance.  
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