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Algorithms for calculation of energy levels for symmetric molecules of ABC3 and AB4 types in 

internal orthogonal coordinates are discussed. The symmetric basis of two torsion coordinates is 
considered in detail. An advantage of the described technique for determination of vibration states 
consists in the possibility of localizing basic functions near the minimum, which decreases the 
sensitivity to errors in the potential energy surface far from the minimum. Low vibration energy 
levels of the 12CH3

35Cl molecule are calculated. 

 

Introduction 

In recent years, many papers devoted to 
calculation of methane vibrational energy levels have 
been published.1–4 The analysis of high-excited 
energy levels and methane transitions is a 
complicated problem due to the localized structure of 
levels and a rather large dimension of the problem.5,6 
The aim of this paper is to describe the algorithm of 
determination of energy levels from the potential 
energy surface (PES) in internal coordinates for more 
complicated molecules of the ABC3 type. From here 
on, the internal coordinates are specified by four 
vectors r1, r2, r3, r4, each being a linear combination 
of radius vectors of a pentatomic molecule in some 
coordinate system. Permutation of three vectors 
r2, r3, r4 reduces to permutation of equivalent atoms. 
As internal coordinates, we use four distances r1, r2, 
r3, r4, three angles q2, q3, q4, and two torsion angles 
t3, t4.  

This paper describes the technique of 
symmetrization of the wave function of two torsion 
angles and additional potentials needed for correct 
localization of wave functions and considers 
numerical examples of solution of the torsion 
problem, a general algorithm for determination of 
matrix elements of a nine-dimensional problem, and 
an example of calculation of the 12CH3

35Cl 
vibrational energy levels. 

Symmetric torsion basis 

Table 1 summarizes the rules of transforming 
two torsion angles t3, t4 upon permutations of three 
identical atoms 2, 3, and 4 [Refs. 7 and 8]; the 
fourth column presents the rules of transforming the 

coefficients m3 and m4 in the function e
i(m3t3+m4t4) 

induced by the permutations of identical atoms. From 
here on, the permutations are defined as 
(abc) = (ab) (ac), (abcd) = (ab) (ac) (ad), and, 
consequently,   (13)(23) = (123),   (12)(23) = (132). 

Table 1. Transformation of torsion coordinates 

Permutation 
Permutation-induced 

transformation of 
torsion coordinates 

e
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group as 
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Acting by the projecting operators on the basis 

e
i(m3t3+m4t4), we obtain a set of symmetric torsion 

functions 
3 4
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,
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m m
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σ  where G is the representation; σ is 

the row of the representation; n = 1, 2 for the 
representation E. The functions obtained are real 

only at m3 = m4. In place of the functions 
3 4
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,
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m m
F
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m3 ≠ m4 and m3 ≠ 0, m4 ≠ 0, it is possible to introduce 
the real functions: 
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In particular cases m3 = 0 and m4 = 0, only three of 
six functions (1) remain, and in this case the 
normalization of the functions differs from Eq. (1). 
Selecting all pairs of non-negative m3 and m4 so that 
m3 + m4 ≤ mmax and m4 ≤ m3, we obtain the complete 
symmetric basis. The area of m3 and m4 values 
determining the complete basis (2) is marked in 
Fig. 1.  
 

 

Fig. 1. Area of values determining the basis (2) (the square 
shows the range of all m3 and m4 values obtained through 
permutations). 

 
An alternative method for constructing the 

symmetric basis is the numerical solution of the two-
dimensional torsion problem followed by 
symmetrization. Fixing the coordinate t4 equal to its 
equilibrium value, we can find one-dimensional 
eigenfunctions Tn(t3). Solving the two-dimensional 
problem in the basis Tn3

(t3)Tn4
(–t4) with the kinetic 

energy operator  
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we find eigenvectors and the corresponding energies. 
The eigenvectors obtained are not always transformed 
correctly upon permutations. Thus, double degenerate 
vectors with close energies can be linear combinations 
of vectors transformed by the representation E. Using 
the rules from Table 1, we can find how two 
eigenvectors  transform  upon the permutation (23)I: 
 

 
1 1

2 2

(23) .
f a b f

I
f b a f

−⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
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Let us find such rotation that the vector 1 2( , )f f  is 

transformed into the vector 1 2( , ),f f′ ′  being 

transformed similarly to Eq. (3) with 

1/2, 3/2.a b= =  This rotation results in two 

vectors, which are then transformed by the 
representation E. The eigenvectors of the symmetry 
A1 and A2 do not require an additional rotation. A 
disadvantage of this approach is the fact that the 
high-excited functions not always can be easily 

symmetrized, but it is easier to calculate contracted 
torsion matrix elements in this basis.  

Additional potentials  

The introduction of additional potentials is 
reasonable, when the used potential behaves 
incorrectly at some points of the coordinate space or 
when additional localization of wave functions is 
necessary. For the two-dimensional torsion basis, we 
use the potential of the symmetry A1 in the form 

 
1 3 4 3 4 3 4( , ) ( ) ( ) ( ).AV t t f t f t f t t= + − + − +  (4) 

Figure 2 shows the two-dimensional torsion surface of 
the 12CH4 potential at the equilibrium coordinates r 
and q. Two deep minima correspond to the points 
(120, 240) and (240, 120) in the space t3, t4.  

 

 
 

Fig. 2. Two-dimensional torsion PES (from 0 to 360°) in 
the coordinates t3, t4 (left); two minima at (120, 240) and 

(240, 120). The same surface with the additional potential 
removing the minimum at (240, 120) (right). 

 

If we solve the problem for eigenvalues with such 
potential, then the solutions will be doubled. The 
introduction of the additional potential (4) with 

10( ) 0.00012(sin( ) 3/2)f t t= +  removes one 

minimum. In this case, the eigenvectors at the needed 
minimum change insignificantly. In some cases, it is 
necessary to lift the edges of the potential well. This 
can be done with the additional potential, 

proportional to f(t)  

10(cos( ) 1/2) .t= +  For some 
molecules, it is reasonable to introduce additional 
angular potentials. For example, for 12CH4 we can 
introduce the additional potential, proportional to 

ij

∑(cos(qij+1/3)n,   where n is greater than or equal to 

the maximal power used in the angular part of PES. 
The introduction of additional potentials extends the 
applicability of the PES program for different 
molecules. 

Numerical examples of application  
of the torsion basis 

Table 2 presents the examples of solution of the 
two-dimensional torsion problem. The first seven 
eigenvalues nearly coincide. 
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Table 2. Comparison of solutions of the two-dimensional 
torsion problem for three bases  

Basis (2)  
Representation tn

3
(T3)tn

4
(–t4) 

Mmax = 35 Mmax = 40 

A1 1312.785146 1312.785146 1312.785146

E 2621.432267 2621.432267 2621.432267

A1 3918.344736 3918.344736 3918.344736

E 3927.744705 3927.744705 3927.744705

E 5212.684394 5212.684390 5212.684390

A1 5231.746970 5231.746968 5231.746968

A2 5231.823276 5231.823269 5231.823269

– – – – 

A2 13009.316066 13009.230100 13009.230014

A1 13009.316348 13009.230394 13009.230308

A1 13999.279505 13998.042907 13998.041412

E 14010.745382 14009.818399 14009.816693

 
Eigenvalues in the range 13000–14000  cm–1 differ 

markedly, since the basis Tn3
(t3)Tn4

(–t4) was 

restricted  by the product of Tn3
(t3) and Tn4

(–t4) so 

that the total energy of one-dimensional eigenvalues 
was lower than 80000 cm–1. The number of basis 
functions for the basis Tn3

(t3)Tn4
(–t4) was 1020. The 

number of basis functions for the basis (2) with 

mmax = 35(40) was 666(861), 595(780), and 1260(1640), 
respectively, for the A1, A2, and E blocks, while the 
number of nonsymmetric basis functions was 
3781(4921).  

Calculation of vibrational matrix 
elements  

The problem of determination of vibrational 
matrix elements is computationally expensive. A 
simple method of sequential computation of matrix 
elements is possible only for a very small basis. 
Initially, PES is determined in the basis of 
vibrational trees like in Ref. 9. Figure 3 shows the 
tree structure, whose each branch corresponds to the 
representation of the permutation group of three 
identical atoms. Leaves of the PES tree contain 
various symmetrized coordinates R(r1), R3(r2, r3, r4), 
T(t3, t4), Q(q2, q3, q4).  

 

 

Fig. 3.  PES tree. 

 

The tree of wave functions is defined 
analogously, but their leaves represent symmetrized 

one-, two-, and three-dimensional wave functions. 
Using 9G symbols for the point group Ñ3v, it is 
possible to reduce the calculations of a reduced 
matrix element to the calculation of one-, two-, and 
three-dimensional reduced matrix elements. For the 
efficient operation of this algorithm, it is necessary to 
have a memory capacity sufficient for storage of one-, 
two-, and three-dimensional reduced matrix elements.  
 Another method applied, in particular, for CH4 
consists in preliminary solution of the radial and 
angular problems, followed by solution of the 
complete problem in the basis of radial and angular 
eigenfunctions. In this case, the problem is in the 
calculation and storage of angular matrix elements.  
 In some cases, it is possible to apply a somewhat 
improved method of sequential computation of matrix 
elements. For this purpose, wave functions and PES 
terms are sorted first with respect to the angular part 
and then with respect to the radial part. All radial 
matrix elements are precalculated and stored in the 
memory. Then every calculated angular matrix 
element is multiplied by a radial matrix element and 
the resultant matrix element is saved on the disk. 
Such a scheme does not require the storage of angular 
matrix elements in the memory, but does not use the 
advantages of high symmetry of the problem. The 
selection of some or other computational scheme 
depends, to a great extent, on the form of PES 
representation.  

Calculation of vibrational levels  
of the 12CH3

35Cl molecule 

Table 3 presents the experimental vibrational 
energy levels of the12CH3

35Cl molecule along with 
those calculated from the six-order PES.10  

 

Table 3. Vibrational energy levels of 12ÑH3 
35Cl 

Assignment Experiment Calculation I Calculation II

ν3 732.84216 733.580255 733.0826 

ν6 1018.07090 1017.585 1015.914 

ν2 1354.88112 1359.794 1355.645 

ν5 1452.17844 1452.926 1451.302 

2ν3 1456.76266 1458.867 1457.767 

ν3 + ν6 1745.37113 1745.833 1744.97 

2ν6(A1) 2029.37523 2031.441 2028.798 

2ν6(E) 2038.32636 2039.59 2037.216 

ν2 + ν3 2080.53577 2082.950 2084.948 

3ν3 2171.88765 2175.591 2174.777 

ν3 + ν5 2182.57173 2184.234 2183.205 

ν2 + ν6 2367.72216 2376.223 2374.192 

ν5 + ν6(A1) 2464.90270 2468.811 2465.555 

ν5 + ν6(A2) 2467.66902 2469.278 2467.276 

ν5 + ν6(E) 2461.64821 2464.098 2461.721 

2ν3 + ν6(E) 2463.81796 2466.634 2464.734 

2ν5(A1) 2879.360 2882.618 2880.711 

ν1 2967.777 2969.623 2968.632 

ν4 3039.286 3044.760 3042.556 
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The calculations were performed with two sets 
of basis functions. In the first set, the number of 
basis functions was 11000, in the second one – 
17523. The calculation of matrix elements for 17523 
basis functions on the Athlon 3800 × 2 processor took 
2 h with the use of the algorithm based on the 
reduced matrix elements. The improved method took 
more than 6 h. Thus, the algorithm based on the 
reduced matrix elements is significantly more 
efficient than the sequential computation of matrix 
elements. 

Conclusions 

The algorithm described can be generalized to 
more complex molecules. In this case, only the tree 
structure and the dimension of the problem change. 
An advantage of the described technique for 
determination of vibrational levels consists in the 
possibility of localizing the basis functions near the 
minimum, which diminishes the sensitivity to errors 
in PES far from the minimum. The algorithms 
presented in the paper have been used to calculate 
energy levels of molecules CH3Cl and CH4. 
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