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Light scattering by hexagonal ice cylinders with the refractive index corresponding to ice 
particles in the visible spectral region is considered. The angular dependence of elements of the 

scattering matrix for randomly and horizontally oriented hexagonal cylinders has been calculated 
numerically. Orientation averaging of optical characteristics over an ensemble of particles has been 
performed analytically with use of the Ò-matrix method. Polarization characteristics of hexagonal 
and circular cylinders are compared. 

 
Crystal clouds cover about 20% of the Earth’s 

surface1,2 and play an important role in the Earth–
atmosphere radiative balance. The knowledge of 
microphysical and radiative properties of crystal clouds 

is necessary for interpretation of remote sensing data, 
for estimation of reflectance and transmittance of light 
fluxes in a spectral range, and for use in climatic 
models.3 The hexagonal shape of ice crystals is used in 
simulation of optical characteristics of crystal clouds.4–6 

  In theoretical investigations of single and multiple 
light scattering by isotropic media, the approach 
based on the expansion of elements of the scattering 
matrix in terms of the complete orthogonal system of 
generalized spherical functions is useful and efficient.7 
The use of coefficients of the Fourier series for 
scattering matrix elements in terms of the generalized 
spherical functions is a compact and convenient 
method for storage of information about optical 
characteristics of a particle ensemble. They, once 
calculated, can be used many times in solving problems 
of singe and multiple scattering. In addition, they 
significantly facilitate the numerical solution of the 
radiative transfer equation8

 and estimation of scattered 
radiation fluxes in arbitrary conical solid angles.9 
Now the solutions are known and algorithms are 
implemented for spherical particles10

 and chaotically 
oriented axisymmetric particles.11 

The analytical algorithm of orientation averaging 
of optical characteristics of randomly oriented particles 
free of axial symmetry was used13,14 to calculate the 
angular dependence and to determine the Fourier 
coefficients of expansion of the scattering matrix 

elements of randomly oriented hexagonal cylinders in 

terms of the generalized spherical functions based on 
the T-matrix method.12 

The data of comparative analysis of the computation 

time, needed for the numerical implementation of the 
analytical method,13,14 and the results of Ref. 5, in 
which the computations for randomly oriented 

hexagonal cylinders were performed with the use of 
the Ò-matrix method and the FDTD (finite-difference 

time domain) method,15
 are tabulated below. 

A hexagonal cylinder is characterized by the 
diffraction parameter ρ = kl (k is the wave number), 
by the ratio ε = l/d of the cylinder length l to the base 

diameter d equal to the double side of a regular 

hexagon, and by the relative refractive index mr. 
 

Table. Time for computation (in s)  
of optical characteristics of randomly oriented  

hexagonal cylinders with the relative refractive index 
mr = 1.30778 + i0.166667 ⋅ 10–7 and ε = 1 

ρ = kL 1* 2** 3*** 

5  1.25 91.45 3960.0

10 3.66 691.31 48600.0

15 26.96 6978.91 180000.0

20 91.57 20241.95 433800.0
 

* Ò-matrix method with the use of the analytical 
averaging algorithm, computations performed on Intel 
Celeron Mobile 1.3 GHz; ** Ò-matrix method,5 
computations performed on DEC VAX Alpha 600 GHz; 
*** FDTD method,5 computations performed on SGI 
Octane 300 GHz. 

 

The analytical algorithm of orientation averaging 
of optical characteristics for ensembles of nonspherical 
particles devoid of axial symmetry is much more 
efficient than the procedure of numerical orientation 
integration over three Euler angles. On the average, 
the analytical algorithm for hexagonal cylinders is two 
orders of magnitude faster than existing analogs.5 
  Computations with the use of the exact theory 
(T-matrix method) are reference and can be used to 
check the adequacy of approximate methods and to 
determine the domain of their correct application. In 
some papers,4,5 in estimation of angular dependence 
of the scattering matrix elements for horizontally  
and randomly oriented hexagonal cylinders, circular 

cylinders, approximating the hexagonal shape of 
particles and having the same volume as hexagonal 
cylinders, are used. 

The angular dependence of normalized elements 
of the scattering matrix for randomly oriented 
hexagonal and circular cylinders calculated by the T-
matrix method is shown in Fig. 1. The diameter d 
here is the diameter of the circle inscribed in the base 
of the hexagonal cylinder. 

It should be noted that the analytical algorithm 
of orientation averaging can be also applied to 
horizontally oriented hexagonal cylinders.14 
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Let α, β, γ be the Euler angles characterizing the 
sequential rotation of the laboratory coordinate 
system (L) about the movable coordinate axes Z, Y, Z 
to the coordinate system (P) related to the hexagonal 
cylinder, where Z coincides with the particle axis and 
passes through the centers of the lower and upper 
hexagonal bases, while X is perpendicular to the base 
side. If the coordinate systems are right-hand, then 
the incident radiation is directed along the positive 
axis Z of the laboratory coordinate system. 

The angular dependence of the scattering matrix 
elements for horizontally oriented hexagonal and 
circular cylinders is shown in Fig. 2 for the following 
orientation distribution density functions: 
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where δ is the Dirac delta. The particle axis makes an 
angle of 90° with the direction of the incident 
radiation, and the orientation of the particle axis in 
the horizontal plane has the uniform distribution, 
that is, density functions (1) and (2) are independent 
of α. The orientation of the hexagonal cylinder 
determined by the rotation about the particle axis is 
described by γ0. The independence of the density 
function (2) of γ means the uniform distribution over 
γ. The area of projection of the hexagonal cylinder on 
the plane perpendicular to the direction of the 
incident wave is maximal at γ0 = 0 and minimal at 
γ0 = π/6. 
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Fig. 1. Angular dependence of the scattering matrix normalized elements of randomly oriented prolate hexagonal (1) and 
circular (2) cylinders of the same volume: logF11 (à), F12 (b), F22 (c), F33 (d), F34 (e), F44 (f); ρ = 20; ε = 2; mr = 1.313. 
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Fig. 2. The same as in Fig. 1, but for horizontally oriented hexagonal cylinders with the orientation distribution (1): γ0 = 0 (1), 
γ0 = π/6 (2); for hexagonal (3) and circular (4) cylinders with the orientation distribution (2). 

 
 
For horizontally oriented circular cylinders, the 

application of the density functions (1) and (2) gives 
the same result, since the orientation of a circular 
cylinder in space is independent of γ. 

In conclusion, it should be noted that the results 
of Refs. 13 and 14 are the logical continuation and 
generalization of the results of Refs. 10 and 11 to the 
case of ensembles of particles devoid of axial 
symmetry. The numerical implementation of the 
analytical algorithm has shown that in some cases the 
polarization characteristics of randomly oriented 
hexagonal cylinders can be estimated with the aid  

of circular cylinders of the same volume. For 
horizontally oriented hexagonal cylinders, there are 
significant variations in the dependence on γ0 in the 
backscattering region for the scattering matrix 
elements F22, F33, F44. 
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