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An equation is derived for the effective radius of a femtosecond laser beam at its nonstationary 

self-action. For the single filamentation regime, the beam evolution has been qualitatively analyzed, 
and a model of beam passage through the global nonlinear focus is constructed. The model is based 
on the results of our numerical investigation. Filamentation of a femtosecond laser beam is considered 
as a process of formation of many local focuses along the propagation path. The dependence of the 
laser beam propagation coefficient (averaged effective beam divergence normalized to its initial 
value) on the initial beam parameters and the light energy absorbed in a medium is determined. 

 
 

Introduction 
 

Propagation of high-power femtosecond laser 
radiation in air is accompanied by its nonstationary 
self-action caused by the Kerr effect and multiphoton 
ionization. A filament is formed in an ideal unimodal 
laser beam at the initial power exceeding the critical 
value of Ðcr ≈ 3.2 GW. The filament is a stable energy 
structure about 100 μm in diameter with the peak 

intensity up to 5 ⋅ 1017
 W/m2

 located near the beam axis 
and able to contain more than 10% of the pulse energy. 
For actual laser beams, perturbations are present in the 
initial intensity profile providing the initial beam 
power several times exceeds the critical power of self-
focusing and causes the formation of multiple filaments 

distributed in the beam cross section.1 
The main physical mechanism restricting the 

growth of filament optical field intensity in gaseous 
media is usually nonlinear absorption at medium 
photoionization, although sometimes this role can be 
played by modulation instability of the beam transversal 
profile.3 Every filament exists due to periodic energy 
inflow from nonfilamented areas surrounding the beam, 
referred to as an energy reservoir, thus compensating 

energy losses for nonlinear absorption. The mean 

length of the filamentation area at a horizontal 
atmospheric path is usually equal to tens of meters.4 
  Several physical models of ultrashort laser 
radiation filamentation have been proposed by now: 
moving focus model,5 self-induced spatial optical 
solitons,6 dynamical moving focus,4 dynamic 
replenishment from the energy reservoir.7 Each of 
these models describes most thoroughly some or other 
aspects of this process. 

The most universal approach to the study of the 
single and multiple filamentation is numerical simulation 

based on the nonlinear Schrödinger equation. However, 
numerical calculation still fails to predict the 
behavior of laser beam characteristics at wide varying 

of initial and boundary conditions of the problem. 
Therefore, it is important to develop approximate and 
qualitative methods for analysis of the self-action 
problem based on solution of the initial equation of 
wave propagation within the framework of physically 
justified assumptions. 

This paper deals with the following problems  
of nonstationary self-action of femtosecond laser 

radiation: derivation of an equation for the laser 
beam effective radius, finding of regularities in the 
beam evolution after global self-focusing based on 
results of numerical calculations, and the use of 
models of nonstationary self-focusing. 

 

1. Nonlinear Schrödinger equation 
 

Assume that a laser pulse, whose electric field 
strength has the form: 

 � (ξ, R, t) ( )0 0–
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i t k
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interacts with a nonlinear medium. Here U is the 
slowly varying (in time t and in the direction of pulse 

propagation ξ) amplitude depending on transversal 
coordinates R = (x, y); ω0 is the radiation central 
frequency; k0 = n0ω0/c is the wave number at the 
radiation central frequency; n0 is the refractive index 

of air. For the problem of nonstationary self-action 

under study, we use the nonstationary Schrödinger 
equation (NSE). In the “concomitant” coordinate 

system, z = ξ– νgt, where νg = ∂ω/∂k is the pulse group 
velocity; ω is the radiation frequency; k is the wave 

number with allowance for group velocity variance. 
The nonlinear Schrödinger equation has the form 
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Here ∇⊥

2 = (∂2/∂x2
 + ∂2/∂y2) is the transversal 

Laplacian; kω
′′ = ∂2k/∂ω2⎜ω=ω0

 is the coefficient in the 

expansion of the wave number k ≈ k0 + νg
–1

(ω – ω0) + 

+ kω
′′(ω – ω0)

2/2 near ω0; α is the nonlinear absorption 

coefficient of the medium; ( )Iε�  is the nonlinear 
refraction coefficient. As an initial condition, we take 
the Gaussian beam having the following form in 
space and time: 
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where R0 and F are the initial radius of the beam and 
the curvature of its wave front; tp is the pulse duration. 
We use the model from Ref. 8, which takes into 
account the instantaneous and delayed Kerr effects, 
multiphoton and cascade ionization, and plasma 

nonlinearity. This allows equation (1) to be written 
in the form  
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Here n2 is the coefficient of the nonlinear addition to 
the refractive index of gas n0; fR is the specific 
fraction of the delayed Kerr effect with the response 
function μ(t – t′) in the summarized change of the 
refractive index; τc is the characteristic time of 
electron collision; ηMPA

(m)  and ηcas are the rates of m-
photon and cascade ionization of gas, respectively. As 
μ(t – t′), we use the equation following from the 
model of a damped oscillator: μ(t) = sinΩt exp(–t/τd), 
where Ω > 20 THz is the frequency of oscillations; 
τd > 70 ns is the characteristic time of damping. 

For the concentration of free electrons, we use 
the following evolutional equation: 
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where ΔEi is the effective ionization potential of air 
molecules. 
 

2. Effective laser beam parameters  
and equations of their evolution  

at nonstationary self-action 
 

Once the beam has passed a distance z, the 
energy transfer coefficient (transmission function) is 
determined as  

 
e
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R  is the intensity of the 

light wave. 
The effective beam radius has the following form: 
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where 
2( )R z�  is the “beam moment of inertia" 

normalized to the initial energy: 
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With the use of Eq. (1) and the effective 
parameters (5) and (7), we obtain equations for Òå 

and 
2

e .R�  For the radiation energy transfer coefficient, 

the equations have the following form: 
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For the parameter 2( )R z� , the following equation 
is formulated: 
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θå is the effective angular divergence of the beam; 
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is the effective pulse duration.2 
Below we consider the single filamentation, 

when the ratio Ð0/Pcr is not too large (Ð0 is the 
initial power in a femtosecond pulse). 

Based on numerical simulation of the problem of 
nonstationary self-action, it was found in Ref. 9 that 
the effective radius of the beam during the evolution 
in the regime of single filamentation passes three 
spatial regions (zones), each characterizing a specific 
stage of nonstationary self-focusing of radiation. 

In the first zone, the beam energy almost does 
not change Òå ≈ 1. Later the beam contraction occurs, 
and the beam intensity increases due to Kerr 
nonlinearity. This corresponds to the situation, when 
the right-hand side of Eq. (9) is constant in this 

region, namely, 2 2 2d /dR z�

 = const. Consequently, the 
square effective radius varies by the parabolic law.1 
In Ref. 9, the approximation equation was obtained 
for the effective radius in the first zone: 
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beam. Equation (10) is valid before the filamentation 
beginning. The coordinate of the filamentation 
beginning zf (local nonlinear focus) is determined by 
the equation1: 
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The second zone begins from the vicinity of the 
global nonlinear focus of the beam zw, in which 

w
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propagation of the laser pulse most intense part in 
the form of a light filament having the length lf and 
terminating at the point zNL. The presence of the 
filament decreases the beam energy. The mechanism 
restricting the energy is multiphoton ionization of the 
medium. It ceases the growth of the beam intensity, 
stopping it at some maximal value Icr ≈ 5 ⋅ 1017 W/m2 
lying near the air breakdown threshold at multiphoton 
mechanism of ionization. 

Finally, the third zone is the zone of linear 
propagation of radiation having passed the zone of 
nonlinear interaction. After the passage of the 
filamentation zone, the light field acquires a complex 
spatiotemporal profile due to self-modulation. 
Dispersion along with Kerr nonlinearity still 
significantly affects the evolution of the effective 
beam radius. As a result, a bend (sharp decrease in 

the rate of growth of the effective radius) arises in 
the second zone after the termination of filamentation. 
Actually, the possibility of this effect follows from 
the equation for the effective radius (9), which takes 
the following form in the absence of absorption: 
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It follows from this equation that in the presence 
of dispersion and Kerr nonlinearity, the second 
derivative of the square effective interval of the pulse 
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in this case. During the following propagation (third 
zone) of the expanding beam, the Kerr nonlinearity 
becomes negligibly small. As a result, the invariant, 
associated with the effective interval, breaks into two 

independent invariants: 2 2 2
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3. Diffraction model of evolution  
of the effective radius  

of femtosecond laser beam  
in the regime of filamentation 

 

Let us reveal the role of effects associated with 
multiphoton ionization, absorption, and refraction of 
radiation in plasma resulted from air ionization. For 
simplicity, we neglect the influence of dispersion on 
formation of the beam effective radius immediately 
after its global focusing. 

The multifocus model of nonstationary self-
action5

 is taken as a model of filamentation. According 
to this model, a filament is a set of local focuses 
formed as a result of consecutive focusings of temporal 
“sections" of the light beam, which have the power 
higher than Pcr. We neglect the transversal dimensions 
of local focuses as compared to the beam effective 
radius. Assume also that the focus sizes are much 
smaller than the distance between focuses. In this 
case, the dependence of the absorption coefficient on 
coordinates can be replaced with delta functions 
located at the beam axis at the points zi, where i is a 
number of a local focus. Between these points, 
absorption is absent. Introduce the following function: 
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It is well-known that in the absence of 
absorption H = const for a nonlinear medium of the 
Kerr type.1 Upon the passage of the ith local focus, 
the function H changes its value from Hi to Hi+1 

(10)

(11)
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stepwise, remaining constant between focuses. In this 
approximation, Equations (8) and (9) for the effective 
parameters of the beam take the following form: 
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Taking into account Eq. (12), Equation (13) can 
be written in a different form (the sense of this 

representation will be clear later): 
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Here N(z) is the number of local focuses after the 
passage of the distance z; H0 = H(0). 

The passage of the laser beam through each focus 
can be considered as a scattering of a light wave at 
an inhomogeneity having the complex dielectric 
permittivity, whose imaginary part is determined by 
the absorption coefficient α(I), while the real part is 
associated with the dielectric inhomogeneity of plasma. 
  Within the multifocus model, the problem of 
propagation of a femtosecond laser pulse through a 
nonlinear refracting and absorbing medium can be 
divided into two problems. The first problem reduces 
to the study of radiation propagation through a 
nonlinear medium of the Kerr type, while the second 
problem can be reduced to the study of light 
scattering at localized inhomogeneities. To formalize 
the consideration, we introduce the evolution operator 
ˆ ,S  defined as follows: 
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of the multifocus model the operator ˆS  can be 
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Since the light wave scatters at a spatially 

localized inhomogeneity having complex permittivity, 
both refraction and diffraction are physical mechanisms 
of scattering. To understand the physical meaning of 
,iγ�  defined as a ratio of the increment of the square 

effective beam divergence to the absorbed energy at 
every local focus, we consider a physical example. 
Assume that a plane wave with the amplitude A0i and 

phase ϕ0i : Ui = A0i exp(iϕ0i) is incident on a partly 
absorbing (gray) round screen of radius ai. Immediately 
after the passage through the ith screen, the field 
takes the form  
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It is seen from Eq. (14) that iγ� are determined 

only by parameters of the induced scatterer. For 
above-critical powers (Ð0 > Ðcr), the intensity of the 
light field near a focus is virtually independent of the 
initial laser beam characteristics [Ref. 1, p. 152]. 
Therefore, we assume that the form of a localized 
scatterer is independent of the focus number, that is, 

.iγ = γ� �  Thus, the value of γ�  for above-critical beams 

is determined only by the parameters of the medium 
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medium. Thus, it follows from Eqs. (12) and (13a) that 
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where Da = [1 – Te(z, η, F)] is the function of 
absorption of light energy in the medium. 

Based on definition (6) and taking into account 
Eq. (15), for the spatial zone of filamentation 
z ∈ (zf, zNL), where zNL is the point of filamentation 
termination, we obtain  
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Here G(ξ) = ξϑ(–ξ) is the Green’s function of 
Eq. (15) with the Heaviside function ϑ. 

If there is a point of global focus of the beam 
defined by the condition  
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can be written in the form  
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where Rew is the effective radius of the beam at a 
waist determined by Eq. (16) taking into account 
condition (17). 

Equation (18) provides a simple relation between 
the effective parameters of the beam 2

eR  and Te. 

However, γ remains undetermined. 
To find γ, we use the results of numerical 

solution of the problem given by Eqs. (2)–(4). For 
laser pulses with the initial Gaussian spatiotemporal 
profile and the following parameters: wavelength 
λ0 = 810 nm, duration tp = 80 fs, radius R0 = 1 mm, 
and peak power Ð0/Ðcr = 5, 10, 15, and the initial 
curvature radius of the phase front F = 2LR, it was 
found that γ ≈ 1.3 ⋅ 10–5 and does not depend on Ð0. 
  Figures 1 and 3 show the functions Te(z) obtained 
in the numerical experiment at a different choice of 
model parameters and initial conditions. For these 
dependences, the corresponding approximation 

functions were constructed and then used to obtain 
2

e ( )R z  (Figs. 2 and 4) according to Eq. (16). 

Comparison of these functions with the result of 
numerical solution of NSE (see Figs. 2 and 4) is 
indicative of validity of Eq. (16). 

We have conducted numerical experiments to 
study the influence of plasma inhomogeneities on the 
behavior of the beam effective radius. It has been 
found that if the real part of plasma inhomogeneities 
of permittivity in NSE (3) is “excluded,” the 
dependence of the effective radius of the femtosecond 
laser pulse on the distance does not change significantly. 
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Fig. 1. Coefficient of energy transfer as a function of the 
propagation distance: complete model with fR = 0.5 (1); 
model neglecting the dispersion with fR = 0.5 (2); model 
neglecting the dispersion with fR = 0 (3). 
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Fig. 2. Square normalized effective radius during the beam 
propagation in air: numerical calculation, complete model 
(curve 1); numerical calculation, model neglecting the 
dispersion with fR = 0.5 (curve 2) and 0 (3); function (16) 
with ε�  = k0n2{1/2⎪U⎪2} (4); and with ε�  = k0n2{⎪U⎪2} (5). 
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Fig. 3. Coefficient of energy transfer as a function of the 
propagation distance: complete model; (bold curves) 

numerical calculation by the model (3)–(4); (light curves) 
calculation by the equation Te(z) = Te(zNL) + Dà(zNL)ϑ(z – zf) × 
× [1 – (1+ q(z – zf)

2)–1] at Ð1(0) = 5Pcr, q1 = 16, Dà(zNL)1 = 
= 0.22 (1); Ð2(0) = 10Pcr, q2 = 20, Dà(zNL)2 = 0.30 (2); 
Ð3(0) = 15Pcr, q3 = 20, Dà(zNL)3 = 0.34 (3). 

 

This indicates that the diffraction mechanism prevails 
over the refraction in light scattering at local focuses. 
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At such self-action regime, it was determined that the 
rate of growth of the effective beam radius, after 
leaving the nonlinear beam waist at a global self-
focusing, significantly depends on the light energy 
used for creation of plasma and absorbed in plasma 
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Fig. 4. Square normalized effective radius during the beam 
propagation in air: (1–3) complete model, numerical 
calculation; (1′–3′) plots drawn based on Eq. (16) by the 
function Dà(z′) (see Fig. 3). 
 

 

The important notes should be made. The right-
hand side in Eq. (15) is determined by the function 
of absorption of light energy. The only significant 
assumption in derivation of Eq. (15) was independence 
of γ of the focus number, which is valid for laser 
beams with supercritical power and is not connected 
with the beam structure in spatial coordinates. 
Therefore, within the proposed model equation (15) 
is valid for a wide class of laser beams and self-
action regimes, in particular, for beams with the 

multifilamentation structure. 
 

4. Propagation coefficient 
 

In Ref. 10, for the square effective radius 
2

eR  in 

the second zone, the approximate equation with the 

square dependence on z was obtained. The coefficient 
of z2

 is the square propagation coefficient Ì2
 ≥ 1 

[Ref. 11]. In dimensionless coordinates, the approximate 
equation has the form  

 
2 2

2 2 2

e ew w

( )
( – ) ,

4

M
R R z z′ ′ ′ ′= +  (19) 

where 

 e e 0/ ,R R R′ =  ew ew 0/ ,R R R′ =  ( )20 02 / .z z k R′ =  

In the linear medium, the Gaussian beam has the 
minimal value of Ì2

 (Ì2
 = 1). That is why the factor 

Ì2 is often referred to as a criterion of beam quality 
in the sense that the higher is Ì2 value, the wider  

is the difference of the beam divergence from  

the diffraction divergence of the Gaussian beam 

θ0 = (k0R0)
–1. Assuming that the approximation 

condition is fulfilled at the point of filamentation 
termination zNL determined from the condition of 
absorption termination: 

 2 2

e e ,

NLNL z zz z

R R
==

′ ′=  (20) 

and taking into account Eq. (18) for Ì2 in the 
nonlinear medium, we obtain the following equation: 
 

 2 –1

0( , )M Fη ≈ θ ×  

 
a

–10
0 e2

f

( ) ( , , ) d

2 ( ),

NL

NL

G z z D z F z

H T z
l

∞⎡ ⎤
′ ′ ′ ′⎢ ⎥− η

⎢ ⎥
′× + γ⎢ ⎥

′⎢ ⎥
⎢ ⎥
⎣ ⎦

∫
 

(21)

 

where fl′  is the normalized length of the laser beam 

filamentation: f – ,NL fl z z′ ′ ′=  which is understood as 

the normalized distance from the beginning of beam 
filamentation to the point of termination of light 
energy absorption in the medium. 

The value of Ì2 can be determined from 
experimental data. Thus, for the class of self-acting 
beams having a global focus in the regime of single 
and multiple filamentation according to Eqs. (19) and 
(21), the set of parameters (

ew
,R

 

w
,z  Ì2) formed in 

the process of beam evolution, universally determines 
the behavior of the beam after its global self-
focusing. 

To estimate the value of Ì2 in the case of single 
filamentation, that is, in the regime of laser beam 
propagation, when one filament is formed, we 
approximate Dà by the function of the form 

 
a a
( ) ( ) ( )NL fD z D z z z′ ′ ′ ′= ϑ − ×  

 { }–1
21 1 ( ) ( ) .NLfq z z z z⎡ ⎤′ ′ ′ ′× − + − ϑ −⎡ ⎤⎣ ⎦⎣ ⎦

 (22) 

Figures 1 and 3 show Òå(z′) drawn based on 
Eq. (22) with the corresponding parameters Dà(z′NL) 
and q selected based on the results of numerical 
calculation. It is seen from Figs. 1 and 3 that 
approximation (22) is in a good agreement with the 
results of numerical calculation. Using Eq. (22) and 

according to Eq. (21), we obtain the following 
approximate equation for Ì2: 

 2 1

a 0( ( ))NLM D z
−′ ≈ θ ×  

a a

0 a a

a a a

a

( ) ( )
( ) 1 ln

( )
,

1 ( )

NL NL
NL

NL

NL

D z D z
H D z D

D z D D

D z

⎛ ⎞⎧ ⎫′ ′⎡ ⎤γ ⎪ ⎪′+ − Δ +⎜ ⎟⎨ ⎬⎢ ⎥⎜ ⎟′ − Δ Δ⎪ ⎪⎣ ⎦⎩ ⎭⎝ ⎠×
′−

 

  (23) 

where ΔDà = –ΔÒå ≈ 0.04 is the relative increment of 
the energy stored in the medium during the passage 
of each local focus. Neglecting ΔDà/Dà(z′NL) << 1, 
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which corresponds to the condition P0/Pcr >> 1, 
Eq. (23) takes the following form: 

 2 1 0 a

a 0

a

( )
( ( ))

1– ( )

NL

NL

NL

H D z
M D z

D z

−

′+ γ
′ ≈ θ ≈

′
 

 1 2

0 a a0.814 ( ) 2 ( ) .NL NLD z D z
− ′ ′≈ θ γ +  (23à) 
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Fig. 5. Propagation coefficient Ì2 in the second spatial 
self-action zone as a function of normalized initial pulse 
power η = P0/Pcr (numerical calculation in Ref. 9, squares) 
and of N∞ at F = 2LR (curve drawn by Eq. (23a)). 

 
Let us introduce the concept of the total number 

of focuses formed after the termination of 
filamentation as N

∞
 = Dà(z′NL)/ΔDà. Figure 5 shows 

the dependence of Ì2 on N
∞
. One can see an 

approximate relation between the number of focuses 

N
∞
 and the initial power of radiation: N

∞
 ≈ η. 

Thus, in the regime of single filamentation, the 
propagation coefficient Ì2

 is determined by the initial  
 

parameters H0 and F and the amount of energy 
stored in the medium Dà(z′NL). 
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