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Scintillations are found for incoherent general type beams in weakly turbulent horizontal 
atmospheric links. Incoherent cosh-Gaussian (IChG) and incoherent cos-Gaussian (ICG) beams 
exhibit lower scintillations for larger absolute displacement parameters. IChG beam yields lower 
fluctuations than the ICG beam for the same absolute displacement parameter. Narrower ring 
incoherent annular (IA) beam scintillates less than the wider ring IA. Increase in the source size 
lowers the scintillations for all types of the incoherent beams. As the wavelength increases, the 
scintillations of IChG, ICG and IA beams first increase, then start to decrease and eventually the 
scintillation indices merge towards a certain value. Raising the structure constant first increases the 
intensity fluctuations for all the mentioned beams where further rises in the structure constant result 
in the same level of scintillation index.  

 

1. Introduction 

Intensity fluctuations is an important parameter 
to be taken into account in analyzing the performance 
of an atmospheric optical communications link. It is 
known that the intensity fluctuations differ as the 
source field profile or the source coherence property 
changes. The scintillations of coherent sinusoidal-
Gaussian1,2 and annular beams2,3 in turbulent links 
are studied. Partial coherence is introduced into such 
beam types to examine the effect of the degree of 
coherence on the propagation behaviour in free 
space4–6 and in random media.7,8 It is of interest to 
understand the scintillation noise behaviour when 
incoherent sources of different intensity profiles are 
employed in atmospheric optics links. In this respect, 
we have recently reported the scintillation index 
variations of incoherent flat-topped Gaussian sources 
in atmospheric turbulence.9 In this paper we 
investigate the intensity fluctuations in weak 
turbulence under incoherent sinusoidal-Gaussian and 
incoherent annular excitations. 

2. Formulation 

The deterministic source field expression 
yielding sinusoidal-Gaussian and annular beam 
profiles is obtained as a special case of the general-
type beam field formula10: 
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where s = (sx, sy) is the transverse source coordinate, 

A�  is the amplitude of the �th component of the 

source field, 
x

V �  and yV �  are the displacement 

parameters, 

sx
α �  and syα �  are the Gaussian source 

sizes, j = (–1)0.5 and N denotes the number of 
beams. Representing the random part of the source 

field by 
sr
( ),u s  the incident field can be expressed in 

terms of a product of the deterministic and the 
random source fields as 

 s srsd( ) ( ) ( ).u s u s u s=  (2) 

Using the incident field given in Eq. (2) and 
applying the extended Huygens–Fresnel principle, 
instantaneous received intensity as measured by a 
detector whose response time is much longer than the 
source coherence time is found to be 
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where * represents the complex conjugate, L is the 
link length, λ is the wavelength, k = 2π/λ is the 
wave number, p = (px, py) is the transverse receiver 
coordinate, and ψ(s, p) is the random complex phase 
of a spherical wave propagating from the source point 
to the receiver point found by Rytov method. The 
second order source mutual coherence function is 

*
2 1 2 sd sd( , ) ( ) ( )s

s
u uΓ =< >s s s s  which can be expressed 

for an incoherent source by11  
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Here δ is the delta function. < >s is the ensemble 

average over the source statistics, 1 2[( )/2]I +s s  is 

the intensity at the source coordinate 1 2( )/2.+s s  

Inserting into Eq. (3), δ function representation 

of 1 22
( , )s

Γ s s  together with the deterministic source 

field expression for the general-type beam field 
formula given by Eq. (1), assuming that the source 
and the medium statistics are independent, using  
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as given in Ref. 12 (where < >m, Dψ, ρ0 = 

= 2 2 3/5(0.545 )
n

C k L
−  and 2

n
C  are the ensemble average 

over the medium statistics, wave structure function, 
the coherence length of a spherical wave propagating 
in the turbulent medium and the structure constant, 
respectively), performing the integrations over s1 and 
s2, the average intensity at the receiver plane is 
found as 
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In finding <I
2(p, L)>, the instantaneous intensity 

given by Eq. (3) is used as the starting point to 
obtain 
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Using 2

2 1 2 1 2 1 2( , ) ( )/2 ( )s

IΓ = λ + δ −⎡ ⎤⎣ ⎦s s s s s s  and 

performing the integrations over s1, s2, s3 and s4, we 
obtain  
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where 2 2 7/6 11/6
0.124

n
C k Lχσ =  is the variance of the 

log amplitude fluctuations for a spherical wave,  
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and 
1 1 1 10  ( ) , , , y y y xH W B E
′ ′ ′

ρ � � � � ��  are obtained when x 

is replaced by y in Eqs. (8) and (9). In reaching 

Eq. (7), we have utilized ( ) ( ) ( )= jSψ χ +s p s p s p, , ,  

where ψ, χ and S are the wave, log-amplitude and 
phase fluctuations, respectively. Inserting ψ  in 
Eq. (6), for χ Gaussian distributed in weak 
turbulence, < >m in Eq. (6) can be approximated by 
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where 1 2( , )Bχ s s  is the two source spherical wave 

covariance function of the log-amplitude fluctuations 
given by13: 

 
( )

1 2 1 1

2

1 22

2 2 2

0

( , ) ( ) ( )

( ) exp . 

m

m m

Bχ

χ

= < χ − <χ > ×⎡ ⎤⎣ ⎦

⎛ ⎞−
× χ − <χ > > = σ ⎜− ⎟⎡ ⎤⎣ ⎦ ⎜ ⎟ρ⎝ ⎠

s s s s

s s

s s

0 0

0 0

, ,

, ,

 
(11)

 

Using Eqs. (4) and (7), the scintillation index is 
found to be 
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and G(ρ0 = ∞) denotes G(ρ0) evaluated at ρ0 = ∞. 
Note that Eq. (12) is independent of transverse plane 
coordinate p, thus our numerical results of the next 
section are equally applicable to on-axis as well as 
off-axis positions. 

3. Results 

The scintillation index provided in Eq. (12) 
which is valid for horizontal and weakly turbulent 
links is calculated for incoherent cosh-Gaussian 
(IChG), cos-Gaussian (ICG) and annular (IA) beams 
and the results are presented in this section. As 
known, turbulence is an integrated effect formed by 
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the wavelength, link length and the structure 
constant, and it is named weak, when the spherical 
wave scintillation index is much less than unity. 
Parameter sets to form these beam combinations are 
obtained from the general beam formulation as 
explained in Ref. 14.  

Figs. 1–3 provide of the scintillation index 
variations of IChG, ICG and IA beams versus the 
link length. Being valid for all link lengths, IChG 
and ICG beams of fixed sizes yield smaller 
scintillations when the absolute displacement 
parameter increases. Again for all the link lengths, 
narrower ring IA beam has lower scintillations than 
the wider ring IA beam under the condition that the 
primary beam sizes are the same. Comparison of the 
intensity fluctuations versus the link length 
behaviour of IChG, ICG and IA beams are given in 
Fig. 4. For the same absolute displacement parameter 
and at a fixed link length, the scintillations of IChG 
beam is lower than the scintillations of ICG beam.  
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Fig. 1. Scintillation index of incoherent cosh-Gaussian 
beams versus the link length at various displacement  
parameters. 
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Fig. 2. Scintillation index of incoherent cos-Gaussian beams 
versus the link length at various displacement parameters. 
 

Figs. 5 and 6 show the intensity fluctuations of 
IChG, ICG and IA beams versus the source size. For 
all of the IChG, ICG and IA beams, the scintillation 
index becomes smaller for larger source sizes. This 
supports the transmitter aperture averaging effect.15 

IChG beams have lower fluctuations than the ICG 
beams when the source size and the absolute 

displacement parameters are the same. At a fixed 
source size and absolute displacement parameter, 
IChG beams scintillate less than the ICG beams. As 
seen from Fig. 6, for all ring sizes, the intensity 
fluctuations become smaller when the primary beam 
size becomes larger. This reduction is pronounced 
when the ring becomes narrower. 
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Fig. 3. Scintillation index of incoherent annular beams 
versus the link length at various source size ratios. 
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Fig. 4. Comparison of the scintillation indices of incoherent 
cosh-, cos-Gaussian and annular beams versus the link 
length. 
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Fig. 5. Scintillation index of incoherent cosh-, cos-Gaussian 
beams versus the source size. 
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Fig. 6. Scintillation index of incoherent annular beams 
versus the source size. 

 

In Figs. 7 and 8, the wavelength dependence of 
the scintillations of IChG, ICG and IA beams are 
provided. Increase in the wavelength first causes the 
scintillations of IChG and ICG beams to increase, 
however when the wavelength is further increased, 
the scintillations decrease, and eventually merging 
towards a certain value.  
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Fig. 7. Scintillation index of incoherent cosh-, cos-Gaussian 
beams versus the wavelength. 
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Fig. 8. Scintillation index of incoherent annular beams 
versus the wavelength. 

 
For IA beams, similar trend in scintillations 

versus the wavelength is found as noted in the IChG 
and ICG beam scintillation behaviour versus the 
wavelength. Finally, in Figs. 9 and 10, the change in 
the intensity fluctuations of IChG, ICG and IA 

beams in weak turbulence is investigated when the 
structure constant changes. Increase in the structure 
constant first increases the scintillations of IChG, 
ICG and IA beams, whereas when the structure 
constant is increased further, the intensity 
fluctuations for all IChG, ICG and IA beams will 
stay at the same scintillation level. Comparing the 
intensity fluctuations of IChG, ICG and IA beams 
with their coherent counterparts and the coherent 
Gaussian beam reveals that the intensity fluctuations 
IChG, ICG and IA beams are lower when the source 
sizes are large.  
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Fig. 9. Scintillation index of incoherent cosh-, cos-Gaussian 
beams versus the structure constant. 

 

0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

Incoh. annular (αs2/αs1 = 0.95)  
Incoh. annular (αs2/αs1 = 0.70)  
Incoh. annular (αs2/αs1 = 0.45)  
Incoh. annular (αs2/αs1 = 0.20)  

λ = 1.55 μm, 
αs1 = 5 cm,  
L = 3.5 km 

S
ci

n
ti
ll
a
ti
o
n
  
in

d
e
x
, 
 m

2
 

Cn

2
 ⋅ 10–14  

Fig. 10. Scintillation index of incoherent annular beams 
versus the structure constant. 

Conclusion 

For incoherent cosh-Gaussian, cos-Gaussian and 
annular beams, the scintillation index in weakly 
turbulent horizontal atmospheric optical links is 
formulated. Our formulation is derived for a detector 
having a response time much longer than the source 
coherence time, and under the assumption that the 
source and the medium statistics are independent. 
Also, delta correlation is utilized to mimic the spatial 
partial incoherence of IChG, ICG and IA beams. 

Our study covers the investigation of the 
changes in the scintillations of IChG, ICG and IA 
beams when the link length, source size, wavelength 
and the structure constant vary. For both IChG and 
ICG beams, at a given source size, as the absolute 
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displacement parameter increases, the scintillations 
decrease, and this holds to be true for all the link 
lengths. At the same link length and at the  
same absolute displacement parameter, intensity 
fluctuations of IChG beam is lower than the 
fluctuations of the ICG beam. In IA beam 
fluctuations, at all the link lengths, when the size of 
the primary beam is kept constant, IA beams with 
narrower ring structure will fluctuate less than the 
IA beams possessing wider ring structure.  

When the scintillation index is examined versus 
the source size, it is found that for all types of 
incoherent beams investigated, large sized incidences 
result in smaller intensity fluctuations in turbulence. 
Comparing IChG beams with ICG beams, it is seen 
that when the source size and the absolute 
displacement parameter are kept constant, IChG 
beams fluctuate less than the ICG beams. For both 
IChG and ICG beams, when the source size is kept 
constant, the scintillation index decreases when the 
absolute displacement parameter increases. When the 
size of the primary beam in IA beams is increased, 
the intensity fluctuations become smaller, and this 
trend occurs for all ring sizes, the reduction in the 
scintillations is more when the ring of IA beam 
becomes narrower.  

Dependence of the intensity fluctuations of 
IChG, ICG beams on the wavelength shows that the 
fluctuations become larger as the wavelength 
increases until a certain wavelength value, after 
which the trend reverses, i.e., the increase in the 
wavelength causes the fluctuations to decrease. When 
the wavelength is further increased, all types of 
IChG and ICG beams tend to attain the same 
scintillation index values, mainly due to the 
domination of the source incoherence in the 
determination of the intensity fluctuations. For IA 
beams, the intensity fluctuations follow a similar 
trend as in the IChG and ICG beam scintillations 
versus the wavelength.  

In weak turbulence, increase in the structure 
constant in general raises the scintillations of IChG,  
ICG and IA beams up to a certain structure constant, 
above which the scintillations remain at the same 
level. This resembles the saturation effect of 
scintillation as in the coherent beam case. However, 
here the saturation level of the scintillation index is 
determined by the corresponding incoherent beam.  
 As a final note, the comparison of the 
scintillations of IChG, ICG and IA beams with their 
coherent counterparts indicate that incoherent 
general beams with large source sizes exhibit smaller 
intensity fluctuations.  
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