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Spatial spectra of strong scintillation behind a phase screen with isotropic heterogeneities 
have been studied. The medium forming the screen was described by the Kolmogorov 3D spectrum of 
heterogeneities. Calculations were performed for conditions of optical observations through the Earth’s 
atmosphere from a satellite. The domains of applicability for three different approximations of the 
solution of the equations for 2D spectra have been studied; the possibility to determine medium 
parameters from the observed 1D spectra of strong scintillation is investigated; and the domain of 
measured parameters, which contains the solution for the inverse problem stable with respect to 
measurement errors, has been determined. 

 

Introduction 
 

It is commonly accepted that it is very difficult to 

determine turbulence characteristics from observations 
of strong saturated scintillation.1 Approximation of 
weak scintillation is successfully used in reconstruction 
of turbulence parameters on the base of satellite 
observations of stars through the Earth’s atmosphere.2,3 
Applicability limits of such approximation were 

defined more exactly in Ref. 4 for determining 

parameters of anisotropic heterogeneity generated by 
internal waves in the atmosphere. In this paper we 
study the possibility to determine parameters of the 
locally isotropic turbulence from measurements of 
strong scintillation spectra. The problem is posed as 
applied to conditions, under which the turbulent 
medium is localized at a long distance from the 
observation plane. 

The study is based on numerical computations 
with the model of phase screen. The model is widely 
used in investigations of scintillation generated by 
heterogeneity of the interplanetary medium and 
atmospheres of planets, including the atmosphere and 
ionosphere of the Earth. For the phase screen model, 
there exist integral relations connecting scintillation 
spectra with spectra of phase fluctuations on the 
screen.5 The latter, in turn, are defined by fluctuation 
spectra of the refractive index of the medium, 
through which the wave is propagated. The integral 
relations in their general form were introduced by 
V.I. Shishov.6,7 They form the fundament for 

numerical simulation of initial data, which are 
necessary for solving the inverse problem. In this 
part, our study is contiguous with Ref. 8, presenting 
the numerical analysis of intensity fluctuations behind 
Kolmogorov’s phase screen, and with Refs. 9 and 10, 
dealing with two-dimensional scintillation spectra 

behind an isotropic power phase screen with a 

spectrum, characterized by a small (as compared to 
Fresnel scale) internal scale and different indices 
between 2 and 6 at the power part. 

Note that the theoretical study of strong 
scintillation is still a matter of interest.11–13 This is 
connected with quickly growing applications of 
satellite methods to sounding the Earth’s atmosphere, 
which are based on sensing by optical and 

radiowaves.14–18 
In this paper we consider spatial spectra of strong 

scintillation observed behind a phase screen with 
isotropic heterogeneities compared with the Fresnel 
scale and of a less scale. For definiteness, parameters 
of the problem are chosen so that they correspond to 
conditions of optical observations through the Earth’s 
atmosphere from a satellite. Different approximations 
are compared with exact calculations of 2D spectra. 
In combination with common approximations, we use 
an asymptotic formula proposed in Refs. 12 and 13 
for the long-wave part of the spectrum. In addition 
to the direct problem, i.e., calculation of scintillation 
spectra by given characteristics of the medium, we 
consider the inverse problem: determining parameters 
of the medium by observed 1D spectra. 

 

Theory 
 

The model of a flat phase screen19 was constructed 
under the assumption that the screen is formed  
by a layer of a turbulent medium with Kolmogorov’s 
spectrum of fluctuations of the refractive index n 
[Ref. 20]: 
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where C 

2
n is a structural characteristic that defines 

power of fluctuations; k is the wave vector; κm is the 
wave number that defined the internal scale. In the 
model of a phase screen, the main part is played by 
the efficient structural characteristic C

2
ef = C

2
nLt, where 

Lt is the equivalent thickness of the phase screen. 
  The two-dimensional spectral density of 
scintillation FI is defined by the equations6,7 
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where DS(z, y) is the structural function of fluctuations 
of a wave’s phase at the exit of the screen. For the 
model (1), the expression for the structural function 
is known20: 
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where k0 = 2π/λ is the wave number of light; M is the 
confluent hypergeometric function. 

For the isotropic case, FI = FI(K), K
2
 = k 

2
z + k 

2
y. 

An important characteristic of a stochastic field 
behind the screen is the coherence function Γ2(R) = 
= exp[–DS(R)/2], R = {z, y}.5 

Just as in Refs. 4, 12, and 13, dispersion of 
scintillation β

2
0 calculated in the approximation of 

weak scintillation20 in the observation plane at the 
distance L from the screen was chosen as a parameter 
characterizing the scintillation intensity. For the 
model (1) in this approximation we obtain 
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where the Fresnel scale is 0/ .FR L k=  

As a rule, experiments deal with measurements 
of one-dimensional scintillation spectra. For the 
isotropic case, 1D spectra VI(κ) are connected with 
2D spectra by the equation20 
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where κ is the one-dimensional wave number. 

Analysis of strong scintillation 2 2( d ( ) 1)IFβ = >∫ κ κ  

on the base of Eq. (2) requires high calculation 
expenditures. Therefore, different approximations for 
individual domains of the 2D spectrum are used. The 
approximation by the spectrum of the squared 
coherence function Γ

2
2 for short waves6,7: 
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where J0 is the Bessel function. 

For long waves, there exists the so-called 

refraction approximation6,7,10,19 
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where F 

(1)
I (K) is the 2D spectrum of weak scintillation 

in the first approximation of the perturbation 

method20: 
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An approximate formula was proposed in Refs. 12 
and 13 to describe the short-wave range of 2D 
spectra. The formula was obtained by decomposition 
of Ψ in Eq. 2 into the Taylor series by small {z, y} in 
the neighborhood of the point {z, y} = 0. Note that 
the approximation of Ψ by a square polynomial was 
applied earlier in Ref. 21 to calculate dispersion of 
strong scintillation. Here Ψ = 0 at the point {z, y} = 0, 
and the first term of the decomposition, which is odd 
in {z, y}, vanishes after integration with respect to 
these variables. Preserving the second term of the 
decomposition of the order {z, y}2, we obtain for the 
model (1): 
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After substitution of Eq. 9 into Eq. 2 and integration 
with respect to {z, y} we obtain an equation for the 
approximation FA: 
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Applicability limits of the approximations (7), (8), 
and (10) are studied below by comparison with the 
results of numerical integration of the equation (2). 

 

2D scintillation spectra  
and their approximations 

 

The investigations are based on numerical solution 
of the equation (2) for the model (1). Calculations 
were performed for conditions of optical observations 
through the Earth’s atmosphere from a satellite. 
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Radiation wavelength λ and distance L were taken as 
5 ⋅ 10–7

 m and 2200 km, the Fresnel scale RF equals to 
0.418 m, respectively. 

The equation (5) for scintillation intensity β
2
0 

includes the dimensionless wave parameter W = RFκm. 
Its values were assigned as 2, 6, 20, 60, 200 and 
W = ∞ for the case of zero internal scale. The chosen 
values of W correspond to the fact that the internal 
scale of heterogeneity varied from the magnitude 
comparable with the Fresnel scale to zero. For the 
scintillation intensity β

2
0, we took the values of 10, 

100, 1000, 10000. Totally, 24 variants of spectra were 
calculated. As shown in Refs. 6 and 7, the coherence 
radius RC, which is defined by the equation 

DS(RC) = 2, is a characteristic small scale in the 
plane, where strong scintillation was observed. The 
coherence radius varied in our calculations nearly 
from 150 mm for β

2
0 = 10 to 2–4 mm for β

2
0 = 10000. 

  Figure 1 presents 2D scintillation spectra for 12 
variants of parameters’ values taken for calculations. 
The product of the wave number by coherence radius 
is laid off as abscissa, spectral density multiplied by 
the square of the wave number is laid off as ordinate. 
For brevity, below it is called the spectrum. 
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Fig. 1. 2D scintillation spectra for the wave parameter’s 
values W = 2, 20, ∞. In the legend, the first number 
corresponds to W, the second to logβ

2

0. 

 

In this representation, the area under the curve 
is proportional to scintillation dispersion. Other 12 
calculated variants are intermediate with respect to 
those presented in Fig. 1. 

As is seen in Fig. 1, the spectra have two maxima. 
The long-wave one is usually called the refraction 
maximum, and the short-wave one the diffraction 
maximum. The positions of short-wave maxima on 
the axis of wave numbers normalized by RC and their 
values are close to each other. The spectra for wave 
parameters W equal to 200 and ∞ in fact coincide for 
β

2
0 = 10 ÷ 1000 before the range of the short-wave 

maximum. To the right of the short-wave maximum, 
the spectra with W = ∞ differ from others, they are 
proportional to (KRC)

–5/3 for KRC >> 1. The distance 
between the positions of maxima is defined mainly by 

the value of β
2
0. With increase of β

2
0 , the distance 

between the maxima on the axis of wave numbers 
increases, just as the difference between their 
amplitudes. The plateau between the maxima appears 
at W ≤ 20 and broadens with increase of β

2
0. Note 

that the spectra presented in Fig. 1 agree with the 
results of Ref. 10 presenting 2D spectra for three 
values of the internal scale, one of which is zero. 
  Figure 2 presents the approximation of the 2D 
spectrum by the equations (7), (8), and (10) with the 
variant W = 2, β

2
0 = 10 000 as an example. 
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Fig. 2. Analysis of the approximation equations (7), (8), 
(10) for calculation of 2D spectra with W = 2, β

2

0 = 10 000 
as an example. 

 
The quality of these approximations is visualized 

in Fig. 3, where the nodes of the grid correspond  
to parameters’ values used in calculations of FI.  
The refraction approximation FR (8) approximates  

the range of the long-wave maximum. In the 
maximum, FR is lower than the exact solution.  
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Fig. 3. Zones of applicability for approximations (7), (8), 
and (10) for the 2D scintillation spectra in the plane of 
values W and β

2

0. For the long-wave range of the spectrum: 
1 and 2 present the FR approximation (8); for the short-
wave range: 2 and 3 present the FΓ approximation (7), 1 
and 4 present the FA approximation (10). 
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The larger are W and β
2
0, the better is the 

correspondence between FR and FI. In zones 1 and 2 in 

Fig. 3, the relative deviation of FR from FI in the 
maximum does not exceed 20%. The boundary 
between the nodes of the grid is a broken line, it is 
smoothed to simplify the interpretation of Fig. 3. 
  The approximation for the short-wave range of 
the spectrum, i.e., the spectrum of the squared 
coherence function FΓ (7), yields smaller values in 
the neighborhood of the maximum as compared to the 
exact solution. The ratio FI/FΓ > 1, which approaches 
to 1 as approaches to the maximum. The maximum FΓ 
is somewhat displaced to the right of the maximum 
FI. The larger are W and β

2
0, the less are differences 

between FΓ and FI. The approximation FA (10), as it 
is shown in Fig. 2, is closer to the exact solution than 

FΓ in a significantly larger interval of wave numbers. 
This approximation represents the intermediate plateau 
between these two maxima. Generally, the less is W 
and larger is β

2
0, the better operates FA. For the 

short-wave range in Fig. 3, the approximation FΓ is 
closer to the exact solution in zones 2 and 3, the 
approximation FA is closer to the exact solution in 
zones 1 and 4. 

Summing the estimates for quality of 
approximations visually presented in Fig. 3 we see 
that the 2D spectrum can be represented as a sum of 
the approximations (8) and (10) in zone 1, a sum of 
(8) and (7) in zone 2; only (7) operates in zone 3 and 
only (10) operates in zone 4. 

 
 

1D scintillation spectra 
 

Figure 4 presents exact solutions for 1D spectra 
(spectral densities multiplied by the wave number). 
In Fig. 4a, the wave numbers on the abscissa are 
multiplied by RC. The general forms of 1D and 2D 
spectra are similar in this representation. Long-wave 
and short-wave maxima are also present, and the  
 

position of the latter approximately corresponds to 
Fig. 1: κSWRC ∼ 1. Horizontal plateaus, however, are 
absent. Long-wave maxima are not formed for 
variants with the minimal value β

2
0 = 10. In Fig. 4b, 

the 1D spectra are represented as functions of the 
dimensionless wave number κR

2
F/RC. The long-wave 

maximums are grouped near the wave number 
κLW ≈ RC/R

2
F ≡ RCk0/L. 

 

Determination of characteristics  
of the medium by scintillation spectra 

 
To ascertain whether turbulence spectra can be 

reconstructed, we have analyzed equations connecting 
properties of the medium and measured spectra. We 
parameterized the problem because we were interested 
in the information content of scintillation measurements 
with respect to parameters characterizing the medium. 
More refined and exact methods for solving inverse 
problems are to be analyzed in processing real 
observations with allowance for their peculiarities. 
The measurements are performed with restricted 
exactness, in a bounded range of wave numbers, with 
interference of real noises. These are the factors that 
must define the choice of the method for solving the 
inverse problem. We considered an idealized scheme, 
in which a particular form of the structural function 
was used. 

For the model (1), scintillation spectra are 
defined by the following parameters: the distance 
from the phase screen to the observer L, the efficient 
structural characteristic of the screen C 

2
ef, and the 

wave number κm. Let us consider the possibility to 
define these parameters by the observed 1D spectra 
under the assumption that the results of calculations 
can be considered as results of “measurements.” 

Let the distance L be not known as, for instance, 
in radio astronomical observations, and let there be 
two maxima in the observed spectrum, represented as 
the product of spectral density and the wave number.  
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Fig. 4. 1D spectra for the values of the wave parameter W = 2, 20, ∞. The designations are the same as in Fig. 1: the 
dimensionless product κRC (a) is laid off on the abscissa; κR

2

F/RC (b). 
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Then, as follows from the theory6,22 and analysis  
of the data presented in Fig. 4, the product of  
the corresponding wave numbers κLW κSW ≈ k0/L 
immediately yields an estimate for the distance L: 
 

 
0 ( ).LW SWL k≈ κ κ  (11) 

The calculations made it possible to determine 
error of this estimate: it is lower than the exact value 
of L by 10–20% for β

2
0 ≥ 100. 

Then we suppose that the distance L is known, 
as, for instance, in sensing the Earth’s atmosphere 
from satellites, or its estimate is obtained and a series 
of models calculated for this L value is available. It 
remains to find two unknowns, C 

2
ef and κm. The ratio 

of positions of the short-wave and long-wave maxima 
Rκ = κSW/κLW and that for maxima’ amplitudes 
RM = VI(κSW)κSW/[VI(κLW)κLW] were chosen as 
spectrum characteristics obtained from observations. 
We can write two equations for the model (1): 

 2

1 0( , ) ,f W Rβ = κ  2

2 0( , ) .f W RMβ =  (12) 

The unknowns C 

2
ef and κm define W, β

2
0 in Eq. 12 by 

W = RFκm and Eq. (5). The calculated functions f1 
and f2 are shown in Fig. 5. 
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Fig. 5. Functions f1(W, β

2

0) and f2(W, β
2

0). Values of the wave 
parameter W are presented in the legend. 

 

The equations (12) define two curves in the 
plane {W, β

2
0} for the measured values Rκ and RÌ. 

Intersection points of these curves are the solution of 
the inverse problem. If the angle between tangents to 
the curves is not small, the error of the solution and 
the measurement error are of the same order and any 
serious problems seemingly should not arise in 
reconstruction of the parameters. If this angle tends 
to zero, one should use some a priori information 
about the solution. In other words, in order to obtain 
a reasonable result, one should resort to 
regularization. Finally, if the curves do not intersect 
at all in the domain of available measurement data 
due to, for instance, insufficient resolution of the 
measurement method, the reconstruction of the whole 
series of parameters is impossible. In this case, one 

can hope to reconstruct only one parameter, for 
instance, C 

2
ef, assuming κm to be a priori known. 

  Figure 6 illustrates position of the curves (12) in 
the plane {W, β

2
0} for two examples: when one can 

solve the inverse problem with small errors and when 
it is impossible to determine two parameters. 
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Fig. 6. The curves f1(W, β

2

0) = Rκ and f2(W, β
2

0) = RÌ for 
two examples: {W = 20, logβ

2

0 = 1, Rκ = 10.6 rad/m, RM = 3.26} 
and {W = 2, logβ

2

0 = 2, Rκ = 190 rad/m, RÌ = 4.65}. The 
shaded zone shows the range of the measured parameters 
{Rκ, RM}, in which the error in reconstructed values is 
close to the measurement error. 

 

The fragment presents the plane {Rκ, RM} with 
a mapped zone corresponding to all our “measurements.” 

Based on the analysis of neighborhoods of the 
intersection points of the curves presented in Fig. 6, 
we shaded the domain, in which one can expect that 
the difference between errors of the reconstructed and 
measured values is not large. Beyond the domain, 
regularization methods are required to solve the inverse 

problem. The convenience of this representation is that 
the parameters Rκ, RM can be obtained from real 
measurements. 

 

Conclusion 
 
We considered spatial scintillation spectra behind 

a phase screen with isotropic heterogeneities. The 
medium that forms the screen was described by a 
Kolmogorov 3D heterogeneity spectrum including 
Gaussian attenuation with an internal scale varying 
from the Fresnel scale to zero. Spectra of strong 
scintillation were calculated for conditions of optical 
observations through the Earth’s atmosphere from  
a satellite. The study is based on numerical solution 
of the equation (2). We studied the dependence  
of 2D and 1D scintillation spectra on two 
dimensionless parameters of the problem: the wave 
parameter 0 ,= κ

m
W L k  defined by the internal  

scale of heterogeneities, and parameter β
2
0, defining 

scintillation intensity calculated by the perturbation 
theory.5 For 2D spectra, domains of applicability of 
approximate equations (7), (8), (10) were considered. 
The approximation (10) based on decomposition of 
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Ψ(R, R′) by a small R is shown to be closer to the 
exact solution in a more wide range of parameters’ 
values as compared to the common approximation of 
the scintillation spectrum by the spectrum of the 
squared coherence function. 

It is shown that information about parameters of 
the medium forming the phase screen is contained in 
observations of 1D spectra of strong scintillation. In 
the plane {Rκ, RM} we mapped the domain containing 
the solution of the inverse problem. The solution is 
stable with respect to measurement errors. 
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