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 The non-stationary self-focusing of femtosecond laser radiation with Gaussian and super-

Gaussian spatial profiles of intensity in air in the single filamentation mode have been studied 
theoretically. The formalism of effective beam parameters is used; the analytical expressions are 
derived allowing calculating key self-focusing parameters of beams with non-Gaussian profile. 
Qualitative and quantitative similarity of the initial evolution stage of effective radius of such beams 
from the generalized evolutionary variable at distances up to global nonlinear focus is established. 
 

Averaged description of wave beams on the base 
of formalism of effective (mean-square) parameters 
allows a unified representation of evolution of beams 
of different transverse profiles of intensity for the 
case of beam propagating through a linear medium.1 
Similar representation also exists at stationary laser 
beam self-focusing in a medium with cubic Kerr 
nonlinearity, at least up to the local collapse point 
zN.2 In this case, it is sufficient to calculate several 
parameters (Re0, θD, Pc) for each specific type of 
beam, which depend only on optical parameters of 
the medium and transverse profile of electric field 
strength, to determine the value of stationary 
effective radius Re of the beam at any point z of 
optical path by the universal evolutionary 
dependence: 
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is the effective (mean-square) radius (hereinafter, 
instant effective radius); grr  is the radius-vector of 

the beam gravity center; 2 2
x y⊥ = +r  is the 

transverse coordinate; I = c/8π|U|2 is the radiation 
intensity; U is the strength of the wave electric field; 
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r r( , )  is the pulse power; e0 e 0R R z= =( );  
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is the diffraction divergence of a collimated beam of 
the same transverse profile of the wave electric-field 
strength U ⊥r( ) ; F is the initial curvature of wave 

front; η = P0/Pc is the self-focusing parameter, 
defined as the ratio of initial pulse power P0 to the 
self-focusing critical power: 

 c cg 0P P GU ⊥= r[ ( , )] ;  
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where ( )2
cg 0 0 22P n n= λ π  is the critical power for the 

beam with Gaussian profile; λ0 is the radiation 
wavelength (carrier); n0 is the linear index of 
refraction of the medium, n2 is the nonlinear addition 
to it, connected with the Kerr effect; 0 0 02k n= π λ  is 

the wave number. The parameters defined by 
Eqs. (2)–(4) are the radiation propagation 
coefficients dependent on the laser beam profile.  

Modify Eq. (1) to the following form: 
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where the parameter of generalized diffraction 
length 

*D e0 DL R= θ  is introduced. For the beam 

with Gaussian initial transverse profile (GP) 

 ( )2 2
g 0( ,0) exp 2U R⊥ ⊥= −r r  (6) 

with the radius 0R  (with respect to the level 1 e  

from the intensity maximum), we have Re0 = R0; 

(5)
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D Dg 0 01 k Rθ = θ ≡ ( ),  and 

2
D Dg 0 0L L k R= ≡
*

.  The 

resulting position of nonlinear focus of such beam zN 
is defined with accounting for the combined effect of 
initial and induced focusings: 

 N K Kz z F z F= +( ) , (7) 

where D 1Kz L= η−  is the coordinate of the point of 

the collimated beam transverse collapse.  
The beam of super-Gaussian profile (SGP) on a 

circular aperture  
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considered below, is characterized by other values of 
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However, equation (5) keeps its generality for beams 

of such type also in relative coordinates Dz z L=
*

*  

with accounting for corresponding change of relative 
beam power η. 

Self-focusing of a short laser pulse, which is a 
wave packet restricted both in space and time, 
becomes of the dynamic character. If the temporal 
profile of pulse intensity is conventionally divided 
into successive layers, then each of them is 
characterized by its power Pi = P(ti), where t is the 
time. Hence, according to Eqs. (1) and (7), each 
layer has its own law of evolution of the effective 

radius e iR z t( ; )  and the position of nonlinear stock 

N iz t( ) ,  therefore, the closeness of this position to the 

path beginning depends on the larger Pi magnitude. 
Finally, propagation of a high-power short pulse in 
the self-focusing mode for an observer inside the 
laboratory coordinates is represented as a sequence of 
local foci of each time layer, propagating with the 
velocity of radiation propagation through the 
medium. This model of Kerr self-focusing is known in 
literature as the model of moving foci and first was 
suggested in Ref. 3.  

Consider the beam integral effective radius Reg 
characterizing the size of lumped radiant density 
zone4: 
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where E  is the total pulse energy. Substituting 
Eq. (5) in Eq. (9), obtain the law of variation of 
squared integral effective radius at self-focusing: 
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is the pulse-average focusing parameter. This 
equation forecasts the transverse beam collapse in 

general at the distance 
*

*
*D 1 1K Kz z L= = η − . For 

the Gaussian temporal profile of the pulse  

 2

0expP t P= −τ( ) { },  

where P0 is the peak value; τ = t/tp is the 
dimensionless time; tp is the duration with respect to 

the level 1 e , obtain 0 2η = η*  ( )0 0tη = η =( ) .  Thus, 

qualitative behavior of the beam integral effective 
radius at its non-stationary self-focusing can be 
described within the time-independent theory with 
Eq. (5), however, with another self-focusing 
parameter η*. 

This conclusion is confirmed by numerical 
calculations, carried out within the model of 
nonlinear Schrödinger equation (NSE) for Gaussian 
and super-Gaussian transverse profiles of intensity. 
As is known, this equation describes propagation of 
ultrashort laser radiation and takes into account a 
number of nonlinear effects, responsible for 
amplitude and phase self-modulation of light waves, 
in addition to beam diffraction and medium time 
dispersion. NSE in the most common form (see, e.g., 
Ref. 5) has the following structure: 
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Here 2 2
k k
ω
′′ = ∂ ∂ω (0.21 fs2/cm at λ0 = 800 nm) is the 

dispersion of envelope velocity of light pulse in air; 
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is the cubic nonlinearity of refraction coefficient with 
accounting for the instantaneous and inertial 
components of the Kerr effect; np is the variation of 



740   Atmos. Oceanic Opt.  /October  2008/  Vol. 21,  No. 10 Yu.E. Geints and A.A. Zemlyanov 
 

 

medium refractivity due to plasma generation in 
radiation channel; αN is the nonlinear absorption 
coefficient, accounting for radiation energy loss at 
gas photoionization and plasma heating; Λ is the 
molecule response function. 

Equation (11) was solved numerically for model 
beams of Gaussian (6) and super-Gaussian (8) 
transverse profiles of light field envelope with the 
following parameters: pulse width tp = 60 fs, beam 
radius R0 = 1.0 mm, carrier wavelength λ0 = 800 nm. 
The radiation was considered as initially collimated 
(F = ∞), the self-focusing parameter η was equal to 
10, which corresponded to the peak power 
P0 = 32 HW (Pc = 3.2 HW) for GP beam, and 
according to Eq. (4) P0 was about 2.4 times higher 
(G � 2.4) for SGP beam with the geometry parameter 
q = 4. Initial radiation profiles were defined as ideal 
smooth functions; hence, only one axial light 
filament occurred while beam propagating. 

Figure 1 shows the behavior of effective radius 
of laser beams with different intensity profiles 
normalized to its initial value, when propagating in 
air. Here the data are presented versus distance along 
the path.  
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Fig. 1. Evolution of the effective radius of GP (1) and 
SGP (2) beams along the path with relative initial power 
η = 10.  
 

The qualitative analysis of Fig. 1 allows 
separating three different special regions, reflecting 
different stages of radiation non-stationary self-
focusing5: 1) the region of lateral contraction of a 
beam to the global nonlinear focus and formation of 
filament around it; 2) the region of sharp increase of 
the effective beam area after the nonlinear focus; and 
3) the region of linear propagation of radiation 
passed through a nonlinear medium. As is seen from 
Fig. 1, the SGP beam forms the nonlinear focus 
much earlier and then has essentially higher angular 
divergence in comparison with the GP beam. 

Figure 2 presents the same data as Fig. 1 but for 
normalized variables: the global effective radius 

eg eg eg0R R R=  is related to its value in the 

beginning of the path eg0 eg 0R R z= =( ),  and the 

distance z *  is calculated for each beam in accordance 
with its initial intensity profile. 

In the considered case, this gave the ratio of 
generalized diffraction beam lengths 

* *
( ) ( )D DGP SGPL L � 2.9, i.e., the diffraction rate of 

SGP beam is about 3 times higher than that of GP 
one. 
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Fig. 2. The same data as in Fig. 1 in joint coordinates. 
Curve 3 corresponds to evaluation by Eq. (10), the point – 
to the calculated position of beam collapse in the general 

*( )Kz . 

 

As is evident from Fig. 2, the initial stage of 
spatial evolution of the effective radius (lateral 
contraction) is similar for both beams in joint 
coordinates and is defined by Eq. (10). Contracting, 
each beam forms a global focal neck, the path 
position zg and transverse size of which depend on 
radiation profile. It follows from comparison of 
Figs. 1 and 2, that the SGP beam is characterized by 
slower self-acting along the path, but has a narrower 
focal waist in comparison with the GP beam. This is 
a direct consequence of quasiuniform distribution of 
the SGP beam intensity near its axis. As a result, the 
SGP light beam is focused as a unit under the Kerr 
effect in contrast to GP beam with the more rapid 
increase in intensity in the centre as compared to its 
periphery.    

Stronger lateral contraction of SGP beam results 
in its higher angular divergence after the global 
focus. However, the limit radiation divergence 

D D
z

z
∞

→∞

θ = θl im ( ) , forming at the linear propagation 

stage, i.e., on passing through the layer of medium 
nonlinearity, the pulse has close values for GP and 
SGP, and essentially exceeds its initial diffraction-
caused value (more than by 30 times for a given 
data). 

It is important to estimate the coordinate of the 

global nonlinear beam focus position gz ,  since the 
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path maximum of mean-square radiation energy 

density we(z) 
2
eg( ) [ ( )]E z R z= π  is realized at this 

point.4  
Figure 3 shows the spatial evolution of the 

effective size of laser beams of different profiles. As 
is seen, the behavior of integral beam radius Reg 
[Eq. (9)] best agrees with the behavior of instant 
effective radius Re [Eq. (2)], calculated at the time 
point τ = 0, i.e., in the center of temporal profile of 
the pulse. Evolution of the instant effective radius at 
other time cross sections of the pulse (e.g., transverse 
beam cross sections in time layers at leading and 
trailing fronts of the pulse shown in Fig. 3) 
demonstrates qualitatively different behaviors due to 
the lower power at edges and the plasma effect (see 
Ref. 6 for more details).  
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Fig. 3. Variations of the instant (curves 1–3) and integral 
(4) effective radii of GP (a) and SGP (b) light beams along 

the propagation path at η = 10. Values of instant radius 

have been calculated at the time point τ = –1 (1); 0 (2); 
and 1 (3). The dashed line corresponds to evaluation by 
Eq. (1). 

Note that the position zg of the center of global 
focal beam waist (the circle in Fig. 3) in this case 
sufficiently well matches the coordinate zl of the 
local nonlinear focus of central time cross section of 

the pulse (the cross in Fig. 3): g l.z z�  This allows 

one to roughly evaluate the distance of the global 
self-focusing of a pulse as a unit by means of 
changing the pulse for one time layer. 

Using then the time-independent self-focusing 
theory (1) for this layer, we obtain an estimate of the 
coordinate of global nonlinear focus as a point of 

Kerr collapse Nz  of the central layer (the rectangle 

in Fig. 3): 
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where the reduced self-focusing parameter ηG is 
calculated with accounting for a certain transverse 

intensity profile in the beam: G 0 cg 0GP P Gη = = η  

( .G 02 4η η�  for SGP beam in the considered case). 

Then the size of focal waist of the beam Reg(zg) is 

found from Eq. (10) by substitution gz z=

* *

,  and the 

normalized effective focal density of pulse energy as 
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Here the initial focal distance of the beam is 
normalized to the generalized diffraction length 

*DF F L= to unify the expression. 

The influence of initial parameters of a laser 
beam on the parameters of pulse self-focusing is 
evident from evaluating equations (10), (12), and 
(13). For example, a decrease in the beam power P0 
without change of its transverse profile is equivalent 
to a decrease in the self-focusing parameter ηG, which 
will result in corresponding disposal of the global 
nonlinear beam focus zg, increase in the degree of 
beam lateral contraction, and increase in relative 

energy density in the focus gw .  A decrease in the 

initial geometrical beam radius R0 at keeping the 
peak pulse intensity at a previous level will affect 
similarly.  

Thus, non-stationary self-focusing of ultrashort 
laser pulse in air with different transverse intensity 
distribution has been theoretically analyzed on the 
base of numerical solution of NSE. The formalism of 
averaged radiation parameters has been used. It was 
established that some evolution of the integral 
effective radii existed in the single filamentation 
mode at least for two different spatial profiles of 
light beam intensity, namely, Gaussian and super-
Gaussian. It consists in their common functional 
dependence (10) on the generalized evolutionary 
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variable at a distance up to the global nonlinear 
focus. Later on, such similarity is not observed, and 
spatial behavior of the effective beam radius after 
passing the nonlinear focus depends on the initial 
radiation profile.  
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