
S.D. Tvorogov and V.O. Troitskii Vol. 3,  No. 3   /March  1990/   Atm. Opt. 235 
 

0235-6880/90/03  235–07  $02.00  © 1990 Institute of Atmospheric Optics 
 

FREQUENCY SUMMING IN FOCUSED BEAMS 
 
 

S.D. Tvorogov and V.O. Troitskii 
 
 

Special Design Office of Scientific Instrumentation ”Optika”, Tomsk 
Received November 9, 1988 

 
 

A new approach is proposed for solving problems of nonlinear interaction of fo-
cused beams in anisotropic crystals. The approach is based on the use of the methods of 
the theory of Green’s functions. The solution obtained in the fixed-field approximation 
for the converted wave is extended to the case of the second-harmonic generation in 
the strongly nonlinear generation regime. 

 
 

INTRODUCTION 
 

The mathematical aspect of many problems in 
radio physics and optics (including the nonlinear 
aspect) is simplified to one or smother extent, if the 
starting wave equation cam be replaced by an equa-
tion of the so-called truncated parabolic type. The 
advantages and drawbacks of this approach are ex-
amined for some specific questions, for example, in 
Refs. 1–3. The great popularity of the parabolic ap-
proximation does not preclude using Maxwell’s 
equations, especially since the mathematical difficul-
ties connected, for example, with the calculation of 
the Green's tensor of an anisotropic medium4,5 are 
for a number of cases not so daunting.6 

The scheme proposed in this paper for solving 
the problem of nonlinear optical processes at a focal 
point located inside an anisotropic crystal has a fully 
standard form: relations of the Kirchhoff formula 
type (with the Green’s tensor G  of the crystalline 

medium) give the intensity 1E


 of the "linear field" 
in a neighborhood of the focal point, and this region 
is the source of nonlinear waves 1nE


 (second har-

monic, some frequency, etc.). In the fixed-field ap-
proximation3 this approach leads to the expressions 
 

 
 

The computational difficulty, that is unavoidable in 
the mathematically exact formulation of the prob-
lem, is in our opinion fully justified; since the appli-
cation of the parabolic approximation at the points 
of convergence of the geometric-optics rays occasion-
ally rises certain doubts (see the comprehensive 
mathematical analysis given in Ref. 1). (Of course, 
this question requires a special discussion and we 
intend to publish the corresponding analysis). 

At the first stage a quite good approximation was 
found for the Green’s tensor of an anisotropic medium 
and the solution of the wave equation for the mono-
chromatic vector field in a uniform uniaxial crystal 
was written down.6 Then an expression was obtained 
in the fixed-field approximation for the wave at the 
sum frequency under arbitrary boundary conditions.7 

These results are used here to solve the problem 
of three-frequency interaction of focused beams in a 
KDP crystal with a scalar OOe synchronism. It should 
be noted that for KDP with the synchronism of the 
type chosen the expression for 1nE


 contains only the 

components of G  that are calculated exactly. For this 
reason in the region near the focal point the solution 
obtained on the basis on the fixed-field approximation 
is exact. 
 

1. SUMMATION OF FREQUENCIES  
IN FOCUSED BEAMS. FIXED-FIELD  

APPROXIMATION 
 

For the three-frequency interaction of waves in a 
quadratic dielectric we have the system of equations 
 

 
 

 
 

 (1.1) 
 

where 2 2( / ) ( ),j j jc       2 2(4 / ) ( ),j j j jc       

3 1 2,      ( )j   and ( )j   are the dielectric con-

stant tensor and the quadratic nonlinear susceptibility 
tensor. 

In the fixed-field approximation the right side 
of the first two equations can be neglected and the 
following expression is obtained for the intensity of 
the magnetic field at the sum frequency in the case 
of scalar OOe synchronism in the KDP crystal7 
 

 
 

 (1.2) 
 
where E1y and E2z are the components of vectors satis-
fying the corresponding homogeneous wave equations6 
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and 
 

 
 

The solution Eq. (1.2) was written in the prin-
ciple dielectric coordinates. The principle optical 
axis of the medium is oriented along the x-axis, i.e., 
 

 
 

For analysis of the problem of generation of the 
sum frequency near the focal point of a lens (with 
the focal length f) the following picture was 
adopted: 

a) the “crystal" occupies the entire space z > 0; 
b) at z = 0 (in the medium) two ordinary 

spherical beams are given: 
 

 
 

 (1.3) 
 

where 
 

 
 

 
 

and both waves are converging and have a geometric 
focus at the point 
 

 
 

c) the volume of integration in Eq. (1.2) is a 
small neighborhood of the geometric focus, i. e., 
 

 (1.4) 
 

d) for simplicity, the change in the polarization 
vectors is neglected, i.e., it is assumed that 
 

 
 

This description is entirely adequate for the real 
situation, when the focused laser beam is directed at 
angles  and  into a crystal of length 2l, cut at an 
angle of 90 to the longitudinal axis. The refraction on 
the entry face of the crystal only affects A1 and A2 in 
Eq. (1.3) — the functions are very "passive" in subse-
quent transformat ions and estimates. They can even 
be directly replaced by the characteristics of the exter-

nal wave, if the surface of integration (in Kirchhoff’s 
formula) is assumed to pass along the "external" sur-
face of the crystal (see also the discussion of 
Eq. (1.6)). 

Now, after substituting into Eq. (1.2) of the "lin-
ear" problem (E1y and E2z from Ref. 6) the expansions 
of the integrand in a series in ( / f ) up to second-
order terms and introducing t as the variable of inte-
gration, we obtain 
 

 
 

 (1.5) 
 

We note that F1 and Q do not depend on ,


 and 
the limits of integration over the transverse coordi-
nates are infinite owing to the fact that the beam is 
spatially limited. 

The first integral in Eq. (5) can be easily calcu-
lated and the next two integrals are equal to -
functions, which removes the additional integration 
over two variables (for example, over  and ). After 
simple calculations we obtain 
 

(1.6) 
 

where sincx = (sinx)/x. 
It follows from Eq. (1.6) that sections of the 

boundary surface touching the curve 
 

 (1.7) 
 

are responsible for the formation of the field H3 at 
an arbitrary point r0. We note that the form and 
position of the curve given by Eq. (1.7) do not de-
pend on the specific form of the functions A1 and A2 
from Eq. (1.3). The product of the latter, appearing 
in F2, determines only the "energy weight", with 
which each point on the bounding surface (, ) 
enters into the integral (1.6). 

After transferring to the coordinates q and p 
with the help of the relations 
 

 
 

 
 

it is obvious that the curve (1.7) is an ellipse at the 
point (q0, p0): 
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and the ratio of the semiaxes is 
 

 
 

The semiaxis of the ellipse makes an angle  with 
the q-axis of the coordinate system, and 
 

 
 

We introduce another system of coordinates  
and  tied to the  
 

 
 

 (1.8) 
 

where  is the minor semiaxis of the ellipse (1.7). 
For  = 1 (x0 = xf, y0 = yf) corresponds to a polar 
coordinate system shifted linearly into the point 
(q0, p0) and rotated by an angle . 

In the coordinates  and  we obtain instead of 
(1.6) 
 

(1.9) 
 

where 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

The expression (1.9) determines the exatraordinary 
spherical wave at the sum frequency 
 

 
 

emanating from the geometric focus. 
 

2. RESULTS 
 

As the simplest example we shall study the case 
of Gaussian beams. Assume that in the coordinate 
system x, y, tied to the surface of the lens, the am-
plitudes A1 and A2 are equal and have the form 
 

   (2.1) 
 

Stictly speaking, in Eq. (2.1) P is the average  
power of the radiation, since all fields are assumed 
to be monochromatic. However for rectangular 
pulses that are not too narrow, according to the qua-
sistatic approximation,3 the pulse power can be sub-
stituted instead of the average power without mak-
ing an appreciable error. In addition, estimates show 
that to within  1–5% it may be assumed that the 
integrand in Eq. (1.9) does not depend on . Then 
 

 (2.2) 
 

The typical dependence of the amplitude on A3 

the coordinate x0 of the observation point (y0 =  
const), calculated on a computer using the formula 
(1.9) taking into account Eqs. (2.1) and (2.2), is 
presented in Fig. 1 for different focal lengths of the 
lens. The calculations were performed for wave-
lengths of a copper-vapor laser (CVL) 
1 = 510.55 nm and 2 = 578.21 nm. 

If the efficiency () of the process of generation 
of the sum frequency (GSF) is defined as 
P3/(P1 + P2), where P1 is the pulse power in each 
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line, then for P1 = P2 = P we obtain from Eqs (1.9), 
(2.1), and (2.2) 
 

 
 

 (2.3) 
 

 
 

b = 1 for the case of generation of the second har-
monic (SHG), b = 2 for GSF, and ñ is the velocity 
of light. 
 

 
 

FIG. 1. The logarithm of the amplitude of 
the field at the sum frequency versus the co-
ordinate x0 of the observation point for dif-
ferent focal lengths of the lens f = 100 (1), 
200 ( 2), and 300 cm (3). 

 

 
 

FIG. 2. The conversion efficiency versus the fo-
cal length of the lens for different radii D of the 
beam at the lens. GSF: 0.6 (1), 1.0 (2), 1.4 cm 

(3); SHG: 0.2 (4), 0.6 (5), and 1.0 cm (6). 
 

Figure 2 shows the dependence of  on the focal 
length of the lens for different values of the beam 
radius at the lens for SHG of the yellow line and 
GSF of the CVL. The calculations were performed 
for pulsed power P = 5 kW (the corresponding aver-

age power is equal to 1 W). In both cases  reaches 
its maximum value at  = 45. The optical values of 
â are equal to 1.117 rad and 1.265 rad for SHG and 
GSF, respectively. Here it is evidently pointless to 
make a detailed analysis of the expression (2.3), 
since the results pertain primarily to the well-known 
results of the parabolic theory for Gaussian beams. 

The situation represented by the relations pre-
sented above is obviously, to a certain extent. Ideal, 
and therefore Eq. (1.9) or (2.3) can be used cor-
rectly only for estimating the limiting, theoretically 
achieved values of the amplitude of the nonlinear 
field and conversion efficiency. The questions regard-
ing refinement of the working model for specific 
experimental conditions are a separate subject and a 
complicated problem, and are not studied here. 
 

3. SECOND HARMONIC GENERATION IN A 
FOCUSED BEAM. 

NONLINEAR GENERATION REGIME 
 

In this section for simplicity we shall study 
only the second harmonic generation — the particu-
lar case (1.8). 

We shall determine the contribution of an ele-
mentary section of the boundary surface d d = 
dd to the amplitude of the field of the second 
harmonic. Introducing 
 

 
 

 
 

 
 

 
 

 (3.1) 
 

we obtain from Eq. (1.8) 
 

 (3.2) 
 

It is easy to see3,6 that the right side of Eq. (3.2) 
corresponds exactly to the amplitude of the second-
harmonic plane wave in the fixed-field approximation. 
Using Eq. (3.2) the following formal physical inter-
pretation can be proposed for Eq. (1.9): 

a) every point of the boundary surface is a source 
of a partial ray (plane wave) with amplitude A1(0) 
and direction determined by k; 
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b) every partial ray is converted into the second 
harmonic in accordance with the laws of the fixed-
field approximation: and, 

c) at each point 0r


 the amplitude of the total 
field of the second harmonic is determined by the su-
perposition of this completely determined (for a se-
lected point 0r


) infinite collection of independent 

"elementary contributions”. 
The geometric-optics (GO) approximation3 makes 

it possible to represent an arbitrary complex field at 
the fundamental frequency as a collection of independ-
ent partial plane waves and thereby reduce the prob-
lem to finding the second harmonic wave for each such 
ray followed by integration over all possible direc-
tions. In our case we have the inverse problem. The 
structure of the plane waves at the fundamental fre-
quency, corresponding to the solution, can be "con-
structed” from the known (1.8) exact solution for the 
second harmonic field. In contradistinction to geomet-
ric optics, each observation point 0r


 corresponds not 

to one ray of the fundamental wave but rather to an 
infinite collection of such independent partial rays. 

These circumstances suggest, by analogy to geo-
metric optics, that the amplitude of the field at the 
entry into the medium does not affect the structure 
and independence of the partial waves, and determines 
only the character of their transfer into the second 
harmonic. Then substituting in Eq. (3.2) the "fixed-
field approximation” by the well-known solution3 for 
plane waves In the strongly nonlinear regime, we ob-
tain finally 
 

=

 
 

 (3.3) 
 

where 10
1 23 12

10

2
( ) sin sin 2 .

k
n


       

 

 

 

 
 

 
 
where sn [W, ê] is Jacobi’s elliptic sine. 

The expression (3.3), being a generalization of the 
exact solution (1.9), incorporates all effects accompa-
nying the process of focusing of the beam, and in addi-
tion it reflects a number of new features, characteristic 
for the nonlinear generation regime. In particular, as 
the amplitude of the fundamental wave increases the 
values of the optimal focal lengths,, which in the 
fixed-field approximation are found from the plots in 
Fig. 2, will change. In connection with the reverse 
transfer of energy from the harmonic to the fundamen-
tal wave, the monotonic character of the dependence 
of the efficiency on the length of the crystal, observed 
in the fixed-field approximation, will be destroyed, 
etc. It is obvious that for small values of the ampli-
tude A1(0), 1 p 1 solution (3.3) goes over into (1.8). 
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