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Algorithms and computer programs are developed for calculating statistical moments, 
densities, and distribution functions as well as correlation matrices and regressions for 
statistical analysis of the FGGE (the First GARP Global Experiment) cloud data. Sea-
sonal-geographical distributions of cloud coverage and top heights over continents are 
constructed. Cloud top heights and cloud coverage over continents are found to permit 
approximation by the log-normal law. Such approximations are made following Kolmo-
gorov’s criterion at a significance level of 0.95. Results from this study can be used to in-
terpret data of satellite remote sensing in the optical wavelength range. 

 
 

Understanding of the properties of Earth cloud 
cover is most important for an adequate interpretation 
of satellite optical remote sensing data. Understanding 
and forecasting such characteristics are vital for the 
adequacy and accuracy of target identification from 
space. According to published references, cloud top 
height estimates had, until lately, remained the one 
characteristic described by the poorest a most contra-
dictory data. Such a situation was explained by insuf-
ficient available data, by differences in observational 
means, techniques and strategies, by scale disagree-
ments, by the ambiguity of error sources, and by the 
local character of the observations. Cloud studies from 
spacecraft (SC) have made possible a more rigorous 
statement of that problem. However, having only one 
SC, cloudiness can only be monitored at the periodic-
ity with which that SC orbits the Earth. Lack of 
global coverage and of temporal continuity rendered an 
objective picture of the Earth cloud cover impossible. 

The FGGE experiment1 produced measurement 
data on cloud top height and total coverage at 3-h 
time intervals, starting from 00:00 GMT, Decem-
ber 1, 1978 to November 30, 1979 at 262,144 
points of the polar stereographic grid with a 50-km 
resolution. Below, an attempt is made to construct 
a model of the total cloud coverage and cloud top 
heights over continents based on those data. 

To study these characteristics quantitatively 
the statistical analysis techniques were applied to 
55° pixels of the geodetic grid, both on a monthly 
and seasonal basis. The computed values included 
mathematical expectations Mx, variances Dx, and 
correlation coefficients .2 Choosing a 55° grid 
reduced the processed data set to approximately 
184,300 points, and monthly compiling of data —
 to a set of more than 44 million such points, 
which may be considered sufficient for reaching 
statistically significant conclusions. 

Initially lacking distribution laws for the stud-
ied variables, we based our study on the fact that 
the first derivative of the logarithm of the similarity 

function L displays an asymptotically normal distri-
bution with zero mean in case the distribution itself 
is regular and 
 

 
 

Here D and M are, respectively, the variance and 
the mathematical expectation of the function . 

Then denoting 
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have that the function  is a standard normal ran-
dom variable for large data series.3 Since  is a 
monotonic function of , its normal integral yields 
the confidence intervals for the confidence coeffi-
cient 1 – . Such intervals were found for both the 
cloud coverage and cloud top heights at those pixels 
where large data series were available. If, on the 
other hand, a pixel was mostly occupied by a water 
surface, so that it was omitted from the above proc-
essing, except for its smaller land surface part (and 
the data series for the latter was small), the respec-
tive confidence intervals were constructed using the 
well-known Student's criterion. Converting from  
to ( / )Z M S    (here S2 is the sample variance) 
and recalling that the latter variable is distributed in 

accordance with Student's law: 2 /2 ,
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can find for a prescribed confidence coefficient 1 –  
variables Z0 and Z1 such that 
 

 
 

It follows from this that P = (–Z1  Z  Z0) =  
= 1 – , which is equivalent to the relationship 
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The confidence intervals for small series were 
constructed as 0SZ   and 1,SZ   with a confi-

dence coefficient of 1 – . For illustration purposes 
Fig. 1 presents the monthly mathematical expecta-
tions and selective confidence intervals at an M± 
level for both the total cloud coverage and cloud top 
height. These are plotted for the territories of the 
USA (Figs. 1a and c) and China (Figs. 1b and d). 
Pixel to pixel mathematical expectation histograms 
were smoothed using the relationship 
 

 
 

The maps of the USA (Figs. 2a and b, left col-
umns) and China (Figs. 2a and b, right columns) pre-
sent for illustrative purposes the average monthly val-
ues of cloud cover (Fig. 2a) and cloud top height 
(Fig. 2b) in 55 pixels of the Mercator geodesic coor-
dinates. The notations in Fig. 2a represent the cloud 
coverage from 0 to 9 points at one-point intervals, and 
those in Fig. 2b represent the cloud top heights from 0 
(cloudless) to 12 km at 1-km intervals. 

Figure 3 shows the monthly cloud coverage and 
cloud top height distribution densities for the USA 
and China, as obtained by the above technique. 

 

 

If we assume that there are longer term trends in 
these characteristics besides the monthly and the an-
nual ones, our distributions should also be assumed to 
have biased estimates of the momenta. However, one 
can obtain a mathematical expression of the distribu-
tions from these momenta, which would satisfactorily 
describe the obtained sample series. Computation of 
various distribution laws, including the normal, the 
log-normal, the power,  the - and -distributlons, the 
Weibull, Fisher, and Tippett laws (the first  and sec-
ond types of the latter)4,5,6 was carried out using the 
Kolmogorov criterion 
 

 
 

where Fteor(), Femp() are, respectively, the theo-
retical and the empirical distributions; m is the 
discrepancy measure. 

At attempt to describe empirical distributions by 
a normal law resulted in a considerable discrepancy at 
the 95% significance level: m = 17%. Other draw-
backs of such an approximation consist of its symmet-
rical shape and an infinite distribution spread; in de-
pending of the variance, such an approximation can 
attribute too much weight to unrealistic values of the 
variables sought. 
 

 
 

FIG. 1. Confidence intervals for the total cloud cover (n) and cloud top height (h) above the 
USA (a and c) and China (b and d). Roman numerals represent months of the year. 
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Let us consider more closely the possibility of 
applying a -distribution to our data. 

Its parameters are as follows: 
 

 
 

where 
max
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   are, respectively, the 

normalized empirical mathematical expectation and 
the standard deviation, and xmax is the maximum 
value of the random variable x. 

Furthermore, the initial a1 and central m1 
(i = 1, 2, 3, 4) moments of respective orders were 
computed (up to the fourth, inclusive) in accor-
dance with Refs. 2 and 7: 
 

 
 

 
 

 
 

 
 
where (ð), (q), (p + q), (ð + i), (ð + q + i) 
are the values of the -function at the correspond-
ing points. For x > 2 the following property of the 
-function was employed: (õ + 1) = õ  (õ). 
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FIG. 2. Total cloud coverage (a) and cloud top height (b). 
 

At large x (x > 10) the Stirling relationship was 

employed: (x + 1)g 2
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 (its error is below 

1%). 
The applicability criterion for the -distribution2 

is the following: 
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Fig. 3. Monthly distribution densities for the total cloud coverage (a) and cloud top height (b). 
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Fig. 4. Total cloud coverage (––, ––) and cloud top height ( – – – –) distribution functions 
 

Computations demonstrated that all the values of 
x were less than zero. Hence the Pearson distribution 
of the first kind is applicable (the -distrlbution) 
 

 
 

Theoretical graphs of the log-normal function 
were plotted for the same empirical dependences of 
the total cloud coverage and cloud top height in 
logarithmic probability coordinates (Fig. 4). 

Following the principle of minimizing the 
maximum difference between the empirical and the 
respective theoretical values of m we have 
 

 
 

where 
 

 
 

The value of my = log x0 is the mathematical 
expectation of the random variable (RV) Y = log x, 
and y = log 0 is its rms error. The values of x0 and 
0 are determined graphically:8  x0 = x50%, (the me-
dian of the RV x), and  = x50%/x15.9%. 

The mathematical expectation mx and the rms 
error x of a random variable x are equal to9 

 

 
 

 
 

The analysis of the data obtained demonstrates 
that the maximum value of m for the -distribution 
amounts 0 13.8%, while for the log-normal distribu-
tion it is only (–9)%. In that case the log-normal dis-
tribution happens to describe the empirical depend-
ences better. To test the difference of the correlation 
coefficients from zero, the R. Fisher4 confidence inter-
vals were found. For two series taken from a normal 
distribution having a length N, total correlation coef-
ficient , and selective correlation coefficient r, its 

variable 
1 1

log
2 1

r
r


 


 is approximately normally 

distributed even for small r with a mean 
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 and a variance of 1/(N – 3). 

Using the distribution for , the respective 95% confi-
dence intervals were found for r on the assumption 
that  = 0. In this way the noncorrelated zones were 
identified in the overall distribution. 

It was interesting to find the seasonal regres-
sions for zones of high correlation coefficients. We 
attempted to choose a multiple linear regression of 
seasonal total cloud coverage employing the least-
squares technique. To that end, residuals 2ˆ( )y y  

were found for a model 1 2 1... ,y a b x b x       

where ó is the dependent variable (the total cloud 
coverage in our case), x are the months of the year, 
b1 are regression coefficients, a is the free term,  is 

the measurement error with a zero mean, 1̂b  is the 

estimate of the regression coefficient, and ŷ  is the 

predicted value, where 1 1 2 2
ˆ ˆ ˆˆˆ ... .p py a b x b x b x      

Since the variance of the total cloud coverage 
changed from realization to realization, we employed 
weighted least squares. The realization weight was 
introduced as the inverse variance. Serial correlation 
if the residues was calculated from 
 

 
 

where Wj is the weight of the "j-th“ realization. Ap-
plication of the principle of minimizing the sum of 
regression squares 2ˆ( )y y  pointed to the best con-

vergence in the case of a curvilinear (or polynomial) 
dependence of ó on x. Selecting our coefficients from 
the Biometrike Tables6 we were able to fit quite well 
an orthogonal polynomial regression of the third and 

fourth orders: 2 3 4
1 2 3 4
ˆ ˆ ˆ ˆ .y a b x b x b x b x      The 

values of a and b1  for cloud coverage over 81% of the 
area of China are presented below as an illustration. 
The mean square error amounts 0.0053626. 
 

 

 
 

CONCLUSIONS 
 

1. Algorithms and a set of programs were de-
signed to compute mathematical expectations, vari-
ances, correlation matrices, regressions, densities, 
and distribution laws for certain cloud characteris-
tics from the FGGE data. 

2. Seasonal geographic distributions of the 
cloud top height were plotted for the continents. 
These results can be used for interpreting the data 
of satellite remote sensing of the Earth. 

3. It is found that distributions of the cloud 
coverage and cloud top height can be approximated 
by a log-normal law. The approximation is per-
formed using the Kolmogorov criterion at a 95% 
confidence level. 
 
 

REFERENCES 
 
 
1. FGGE Data Catalogue, World Data CENTER-
B, Moscow, (1982). 
2. M.G. Kendall and A. Stuart, The Advanced 
Theory of Statistics, Vol. 1, Distribution Theory, 
Griffin, London. 1958. 
3. M.G. Kendall and A. Stuart, The Advance The-
ory of Statistics, Vol. 2, Statistical Inference and 
Statistical Relationship, 4-th edition, Hafner, 
1979. 
4. O.A. Avaste, O.Yu. Kyarner, K.S. Lamden, and 
K.S. Shifrin, Optics of the Atm. and Ocean Sta-
tistical Characteristics of Cloudiness and Global 
Radiation above the Various Global Oceans [in 
Russian, Moscow (1981)]. 
5. L.W. Falles, J. Geophys. Res. 79, No. 9, 1261 
(1974). 
6. L.T. Matveev [Ed.], Global Cloudiness (Gidro-
meteoizdat, Moscow, 1986). 
7. G.A. Korn and T.M. Korn, Mathematical 
Handbook for Scientists and Engineers, McGraw-
Hill, New York, 1961. 
8. P. Reist, Aerosols. Introduction to Theory [in 
Russian, Mir, Moscow (1987)]. 
9. G.T. Abezgauz, A.P. Tron', Yu.P. Konenkin, 
and I.A. Korovina, Reference Book for Probabil-
ity Computations (Voenizdat, Moscow, 1970). 
10. H. Cramer, Mathematical Methods of Statis-
tics, Princeton Univ. Press, Princeton 5, 1946. 
 


