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An optical communication channel design is proposed to exploit the advantageous 
properties of light in its squeezed quantum states. A quantum theory of two-mode nonde-
generate parametric generation of radiation in a laser cavity of arbitrary Q value is sug-
gested. It is shown that the corresponding semiclassical approach is inadequate in this 
case. 

 
 

INTRODUCTION 
 

The task of generating and implementing vari-
ous states of electromagnetic fields, and above all 
the “squeezed" states of light, has lately attracted 
much attention because it is related to solving a 
whole range of various fundamental and applied 
problems. This interest stems from the possibility of 
reducing the photodetection shot noise, and of achiev-
ing higher operational characteristics of various high-
precision measuring and transceiving systems.1–5 

The most vivid examples of obtaining such 
states of a light field are parametric generation or 
amplification in a resonance cavity.2–7 Both degener-
ate and nondegenerate modes can be used for this 
purpose. In the first case a squeezed state of the sig-
nal wave is generated which, after mixing in a het-
erodyne, can reduce detection shot noise.2,6 The same 
effect can be achieved in a nondegenerate mode 
through preliminary mixing of the signal with 
“blank" waves.1,2,8 In addition the nondegenerate 
interaction is specific in that the signal and blank 
photons are generated simultaneously, so that they 
appear to be strongly intercorrelated.9 This correla-
tion is reflected in photocurrents when both the sig-
nal and the blank waves are independently detected. 
As a result the noise level of the differential photo-
current drops lower than the shot noise.7 

Below we consider the possibility of employing 
these phenomena in optical communication lines. 
But first we present a consistent quantum theory of 
parametric interaction in a resonance cavity of arbi-
trary Q, used in experiments. The results we arrived 
at differ from those already known, derived from both 
the semiclassical and quantum approaches.2,8,10–13 One 
should note that certain studies include no explicit 
statements on the applicability of the semiclassical 
approximation. For example, in Refs. 8, 10, and 11 
the authors operate with the Bose-operators of pho-
ton generation and extinction, although it is easy to 
demonstrate that commutational relationships are 
not satisfied for them within the cavity. The common 

weak point of certain other studies, e.g., Refs. 2, 12, 
and 13, is the approximation of a high-Q cavity they 
assume, which reduces the scope of applicability for 
the results from these works. 
 

I. THE QUANTUM MODEL OF NONLINEAR 
INTERACTION IN THE CAVITY 

 
To describe the electromagnetic field in a nonlin-

ear cavity we employ the following interaction model. 
Let us the ring cavity shown in Fig. I. One of its 

mirrors (the exit one) has non-unit amplitude reflec-
tance R and transmittance . In addition, we assume 
that there are no dissipative losses, i.e., R2 + 2 = 1. 
 

 
 

FIG. 1. Nonlinear cavity scheme. 
 

Let us assume the signal and blank fields are 
given within the cavity and have certain average 
Intensities. The resonator can be either illuminated 
or not illuminated by an external coherent wave. We 
will be interested in quantum fluctuations of radia-
tion from the average zero intensity in front of the 
light-splitting mirror. To describe them we employ a 
model combining the fluctuational component of the 
fields from the fluctuations of the initial vacuum 
waves, which enter the resonator through its exit 
mirror, and which have completed different numbers 
of circuits (see Fig. 2). If there is no cross-influence 
between these waves during their nonlinear interac-
tion, the resulting field is represented simply by 
their superposition: 
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 (1) 
 

where a and a+ are the slowly changing photon gen-
eration and extinction operators in the Heisenberg 
representation, which describes the fluctuational 
component of the field; j = 1, 2 corresponds to the 
signal (j = 1) and blank (j = 2) modes. i.e., we as-
sume parametric interaction to be frequency-
degenerate but not degenerate in terms of the polari-
zation state (the signal and blank waves have  mutu-
ally orthogonal polarization planes); m is the num-
ber of complete circuits of the cavity, t is the time. 
 

 
 

FIG. 2. Diagram of transformation of quantum 
fluctuations in the cavity. The vector 0  de-
notes the initial vacuum state of the field, and 
R and  are the amplitude reflectance and 
transmittance of the entrance mirror. The rec-
tangles represent the nonlinear medium. 

 

The outlined approach is justified for quasi linear 
transformation of fluctuations in the medium, which is 
typical for parametric interaction in the inexhaustive 
pumping field 
 

 
 

 (2) 
 

Here the operators a0mj and 0mja  correspond to vac-

uum radiation entering the cavity and serving as 
“priming” for parametric amplification,9 it then 
makes m circuits of the cavity;  is the increment in 
parametric amplification per circuit; T is the time 
interval needed for one complete circuit of the cavity 
by the radiation;  = T is the phase change during 
the same time interval at the carrier frequency 
 = 1 = 2 is the pumping phase. 

To analyze the statistical characteristics of ra-
diation formed in the cavity we need to know for 
commutative properties of the introduced operators. 
It is apparent that the operators amj(t1) and anj(t2) 
commutate for m = n, since they describe radiation 
which has suffered various numbers of reflections 
from the light-splitting mirror. It is also clear that 
 

 

 (3) 
 

for any t1 and t2. The situation with the operators 
a0mj(t1) and 0 2( )mja t  is somewhat more complex. 

When m  n 
 

 (4) 
 

where t = t2 – t1. These operators commutate for 
,t T   since at a separation interval of T or longer 

they describe Independent vacuum waves. 
To obtain light in a squeezed state the signal 

and blank modes have to be mixed according to 
 

 (5) 
 

(see. e.g., Ref. 8); this operation can be realized by 
employing a light-splitting device or a polarization 
prism. Meanwhile, to lower the shot noise of 
photodetection this wave has to be further mixed 
with the heterodyne signal. Let us assume the carrier 
frequency of the latter coincide with the natural 
frequency  of the signal and blank modes formed in 
the cavity. Then, as follows from the general de-
scription of the photodetection process (see, for ex-
ample, Ref. 1), the correlation function of the 
photocurrent will be 
 

 
 

 
 

 (6) 
 

 
 

Here I  is the average intensity of the recorded 

radiation; Ih and h are the intensity and phase of 
the heterodyne signal;  is the quantum efficiency of 
the photodetector; (t) = 1 for t  0 and is equal 
to zero for t < 0, and the operators a and a+ are 
determined in accordance with (5). In the derivation 
of (6) we disregarded the heterodyne natural quan-
tum fluctuations; their effect can be practically 
completely neutralized by the choice of an appropri-
ate mixing regime.8 The expression (6) is valid for 
broadband detection and the shot noise for it is de-
termined by the -correlated component. 

The optical suppression of shot noise is achieved 
for  = 2k, h –  =  + 2k, where k is an integer. 
We calculate the correlation function (6) for these 
conditions, using the relationships (1)—(5). One has 
to recall that in accordance with (4) the correlations 

1 2( ) ( )mj nja t a t   and 1 2( ) ( )mj nja t a t  differ from zero 

only in case t/T + m  n < t/T + m + 1, i.e., 
when n = m + (t/T)0, where (t/T)0 is the value 
of t/T, which we consider positive, and which we 
round-off to the nearest lower integer. 



A.V. Belinskii Vol. 3,  No. 4 /April  1990/ Atmos. Oceanic Opt. 345 
 

As a result we have 
 

 
 

 (7) 
 

The value 
0

/t T  here is rounded-off to the nearest 

integer, lowest in modulus. The fact that 
 

 (8) 
 
is also taken into account. 

Thus, the correlation function (7) is a stepwise 
dependence with its steps of a size T, and having a 
pedestal given by the values of the function for 
0 < t < T and .t     

The results obtained are valid not only for the 
pre-threshold operation regime, but also when the 
threshold of parametric generation is exceeded. It is 
achieved when R = e–. The convergence of the 
seried (8) depends only on satisfying the condition 
Re– < 1, which is not violated at any finite Q of 
the cavity. Note that the known options of the semi-
classical approach to the problem of parametric am-
plification in a cavity of finite Q8,10,11 are only cor-
rect for the pre-threshold regime. 

The spectrum of the correlation function (7) has 
the form 
 

 
 

 /  
 

 (9) 
 
where  is the detuning from the carrier frequency 
, and the terms produced by the constant compo-
nent of the signal (they are filtered out in the receiv-
ing transmission line) are omitted. Finally, 
sincx = sinx/x. 

An optimal suppression of shot noises in the 
spectrum (9) is achieved at  = 1 and hI I  (the 
latter is quite simply achieved by increasing the het-
erodyne power). In this case the Fano factor, defined 
as the ratio of the variance of the intensity fluctua-
tions to the corresponding variance of the radiation in 
its coherent state, i.e., F() = G()/ I  is equal to 
 

 
 

 (10) 
 

Comparing the obtained results with the data 
from available studies2,8,10–13 one should note the 
following principal difference between them. The 
authors of the studies mentioned above conclude 
that, apart from  = 0, the ideal regime for squeezed 
states of radiation is achieved at generation threshold. 

In our case, however, the Fano factor at genera-
tion threshold (R = e–) 
 

 (11) 
 

would only become minimal if R  1, i.e., for an infi-
nite Q of the cavity. In every other practically achiev-
able case (R < 1) complete squeezing is not achieved, 
so that a threshold regime becomes ideal (R < e–). 
This statement is illustrated by the graphs of the 
minimum possible values of F and their respective 
optimal values of 2 2

0e e     as a function of T for 

various R2 given in Fig. 3. It is seen from the figure 
that decreasing the cavity Q reduces the ultimately 
achievable squeezing and removes the optical amplifi-
cation regime further from the generation threshold. 
 

 

 
 

FIG. 3. Optimized graphs of the minimum possi-
ble Fano factors F and their respective optimal 
values of e–2 as a function of T. The numbers 
near the curves represent the intensity reflectances 
for the light-splitting mirror: R2=0.2–0.99. 
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As noted in the introduction, to realize the ad-
vantages of quantum states of the light field gener-
ated during nondegenerate parametric interaction is 
also possible when the signal and blank modes are 
independently detected. Let us proceed to demon-
strate that their mutual quantum fluctuations, which 
determine the noise level of the differential photo-
current, can be suppressed to a considerable extent. 
In the simplest case, when light is subjected to mul-
tiple passes through nonlinear medium, and two-
mode parametric amplification of vacuum fluctua-
tions occurs in a given classical pumping field, the 
interaction is described by the equations 
 

 (12) 
 

The notations here match to those in (2). 
It is easy to see that the average differential 

photocurrent is zero for the case of independent de-
tection of the signal and blank modes by receivers of 
unit quantum efficiency: 
 

 (13) 
 

Zero variance of the fluctuations of this differ-
ential photocurrent, following from direct computa-
tions, is not as obvious 
 

 (14) 
 

Thus, regardless of the efficiency of the para-
metric process, the photons in both modes turn out 
to be ideally correlated. 

Let us now turn to parametric generation in the 
cavity. For the correlation function of the differen-
tial photocurrent when both photodetectors are ideal 
we have 
 

 
 

 
 

 
 

 
 

 
 

 (15) 
 

The optimal suppression of mutual quantum 
fluctuations is also achieved at the resonance fre-
quencies of the cavity, i.e., for  = 2k, where k is 
an integer (to be accounted for below). 

Substitution of (1) and (2) into (15) and consid-
ering the commutational relationships (3), and (4) give 
 

 
 

 
 

 (16) 
 

 
 

 
 

The dependence (16) is also a stepwise function 
with its steps being of width T. Direct computation 
of the sums makes it possible to simplify the expres-
sion (16) to: 
 

 
 

 (17) 
 

where 4 1 (0)I T S   is the average radiation inten-
sity in the modes due to amplification of the vacuum 
fluctuations (we assume here that only they affect 
the cavity, i.e., it is not externally illuminated). 

As for the spectrum of fluctuations of the dif-
ferential photocurrent, we obtain 
 

 

 (18) 
 

Lack of any dependence on  is what first at-
tracts one’s attention in the final relationships (17) 
and (18), with the latter determining only the aver-
age intensity in each channel; in other words, the 
situation appears to be similar to parametric 
"throughput” amplification. This fact, which has a 
completely obvious quantum explanation, finds no 
such explanation within the framework of the well-
known semiclassical description (Ref. 2, p. 1520), 
where the dependence on  enters the final results. 
Lack of the effect of the parameter  on the degree of 
suppression of shot noises prompts one to conclude 
that a simpler way exists to such quantum states in 
which variance of the fluctuations in one of the field 
quadratures is decisively suppressed by the increment 
of the field (as compared to single-mode (degenerate) 
parametric generation or to the above technique of 
producing squeezed states by mixing the signal and 
blank modes). This consideration is supported by the 
latest experimental data from Ref. 5, p. 361: quantum 
noise could be suppressed in a cavity PLC (Parametric 
Light Generator) only by employing a scheme similar 
to that from Ref. 7, i.e., by independent detection of 
the signal and blank modes. Attempts to produce 
squeezed states in the degenerate regime failed. 
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FIG. 4 Graphs of the minimum possible values of 1 2( ) / 2G I   (a) and the respective optimal 
2
0R  (b) as a function of T for  = 1. 

 
The important difference of the outlined quantum 

treatment from the semiclassical approach is also the 
fundamental impossibility of achieving ideal suppres-
sion of differential photocurrent noise at any given fi-
nite Q of the cavity (|R| < 1). Semiclassical theory, 
however, predicts such a possibility for the case of 
 = 0. 
 

 
 

FIG. 5. Normalized spectra of differential 
photocurrent noises for various R2 = 0.2–0.99 at 
 = 1. The value of one corresponds to the noise 
level during detection of two coherent modes. 

 
Note the following fact, important for the ex-

periment. In accordance with (18) there exists a cer-
tain optimal cavity Q, which minimized G1–2() for 
each frequency . The dependences of the limiting 
values of 1–2( ) /G I   and of their respective 2

0R  

on T are presented in Fig. 4. Examples of the dif-
ferential photocurrent noise spectra, computed for 
various Q’values, are given in Fig. 5. 
 
2. A SPECIFIC SCHEME (A COMMUNICATION 

LINE) 
 

We now turn to a specific example of a commu-
nication line employing the advantages of quantum 
states of light. It is depicted schematically in Fig. 6. 
 

 
 

FIG. 6. Communication line scheme: L – laser; 
P –  polarizer; PT – phase transformer, PLG – 
cavity parametric generator of light including 
nonlinear medium NM; PP – polarization prism; 
PD – photodetector; DA – differential ampli-
fier; MD – matching device. 

 

The transmitter consists of a source of coherent 
plane-polarized radiation and a phase transformer, 
PT, which follows the control signal F(t), carrying 
the transmitted information, to rotate the polariza-
tion plane appropriately. In the receiver a squeezed 
quantum state the of the light field is produced in a 
cavity parametric generator. The polarization planes  
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of its signal and blank modes are mutually orthogo-
nal. The interaction in terms of the generated fre-
quencies is degenerate. The emitted modes are mixed 
by a polarization prism PP in accordance with the 
relationship (5) and are sent to two photodetectors 
PD1 and PD2. The polarization planes of the prism 
are crossed with respect to those of the signal and 
blank waves at an angle of /4. Thus, in the ab-
sence of a signal the differential photocurrent re-
mains zero. A signal, on the other hand, works as a 
heterodyne and drives the whole device out of this 
balance; it is restored by the feedback system, which 
produces the needed change in polarization by means 
of the detector phototransformer PT. The signal, 
driving the feedback system to control and restore 
the balance in the device, characterizes the value of 
F(t). Thus the "operating point" of the system is its 
zero differential photocurrent, and, by mixing the 
received signal at the exit mirror of the cavity with 
radiation generated in it, its noises, in accordance 
with (10), can be suppressed, in the low-frequency 
spectral domain to below the level of the shot noise. 

Photodetection shot noise does not play a limit-
ing role in the considered scheme any more, and does 
not determine the threshold intensity of the received 
signal. Consequently, to transmit the same amount 
of information one would need fewer photons. The 
gain is then determined by the achieved depth of 
squeezing and by the degree to which phase fluctua-
tions of the transmitted signal (in the classical sense) 
are suppressed with respect to the pumping phase, 
since the signal in that case plays the role of the het-
erodyne. It is also possible to track the signal phase in 
the detector via a feedback line. The minimal level of 
noise in the differential photocurrent serves as a crite-
rion of optimum reaction to phase deviations. 

Available experimental data5–7 on producing 
quantum states indicate the possibility of halving the 
number of photons needed for confident reception of 
signals as an advantage of such systems. However, 
the untapped possibilities for improving this tech-
nology and choosing its optimal regimes give 
grounds for expecting even more spectacular results. 
 

CONCLUSION 
 

A quantum solution is suggested to the problem 
of light field evolution in a nonlinear ring cavity of 
arbitrary Q, in which nondegenerate parametric in-
teraction takes place. The results obtained differ 
considerably from the already available conclusions 
and predictions stemming from a semiclassical  

description. The reason for this disagreement consists 
of the divergence between classical and quantum-
mechanical descriptions of reflection from the semi-
transparent exit mirror. While the classical wave 
splits in a regular way at such a mirror, a stream of 
quanta divides in a probabilistic manner. The lower 
the mirror reflectance, the stronger this feature is 
revealed in the resulting reflected wave. This ex-
plains the increasing quantitative differences be-
tween the semiclassical and quantum-mechanical 
descriptions at lower cavity Q’s. 

Furthermore, the scheme of an optical commu-
nication channel has been suggested, which exploits 
the advantages of the squeezed state of the light 
field. The limiting threshold intensity of the received 
signal can then be reduced because of the suppres-
sion of the shot detection noise. A more economic 
regime of information transmission is achieved be-
cause fewer photons have to be transmitted. 

We are grateful to A.S. Chirkin for his helpful 
discussions. 
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