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A two-dimensional mesoscale numerical model of the evolution of clouds with a 
mixed phase, composition is formulated. In this model the microphysical processes are 
taken into account in detail in the calculation of the optical and radiation characteris-
tics. This make it possible to investigate their change and interaction with the mete-
orological parameters in cloud formation, development, and dispersal. Equations de-
scribing the basic physical processes in a cloudy atmosphere and an algorithm for solv-
ing these equations numerically based on the method of splitting are presented. The re-
sults of application of this model for calculation of the evolution of the optical, radia-
tion, and microphysical characteristics of clouds will be presented in a separate paper. 

 
 

INTRODUCTION 
 

The optical, meteorological and radiation char-
acteristics of the atmosphere are closely related with 
one another, and in addition their interaction with 
one another is especially strong during the daytime. 
The term "optical weather" which appeared at the 
beginning of the 1980s should have, in our opinion, 
underscored the unity of the indicated characteris-
tics. In Ref. 1 it is correctly pointed out that in ap-
plication to optical weather seemingly strictly mete-
orological phenomena, such as precipitation, not to 
mention clouds, should also be regarded as an opti-
cal phenomenon. 

At the present time our knowledge of the char-
acteristics of optical weather and the principles gov-
erning the change in optical weather is very limited. 
For this reason it is for the time being impossible to 
proceed directly to optical forecasting, in spite of its 
great practical value.1 In this connection it becomes 
very important to simulate numerically the evolution 
of optical weather. This can be done either by in-
cluding in the optical-radiation models that have 
already been developed parameterizations and com-
puting blocks that describe the meteorological proc-
esses or by adding to the characteristics studied in 
the models of cloud formation and precipitation the 
basic optical and radiation quantities. This paper is 
an example of the second approach. 

The described two-dimensional nonstationary 
mesoscale numerical model, in which the microstruc-
ture of the clouds and precipitation and the dynam-
ics of the atmosphere are taken into account in de-
tail, makes it possible to calculate the fluxes and 
influxes of both long-wavelength and solar radiation, 

as well as some optical characteristics, for example, 
the meteorological visibility range. This model 
makes it possible to follow the evolution of the opti-
cal and radiation characteristics during cloud forma-
tion, development, and dispersal and the relationship 
between the microphysical, radiation, and dynamical 
processes occurring in the atmosphere. 
 
SYSTEM OF EQUATIONS FOR CALCULATING 

THE HYDROTHERMODYNAMICS  
AND MICROPHYSICS OF CLOUDS 

 

The microstructure and phase state of clouds 
under conditions of natural evolution and in the 
process of seeding of the clouds is calculated by solv-
ing the kinetic equations for the size distribution 
functions of the drops f1(x, z, r1, t) and crystals 
f2(õ, z, r2, t) together with the equations for the 
temperature T and the moisture content q: 
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The indices i = 1 and 2 denote drops and crys-
tals, respectively; t is the time; x and z are the hori-
zontal and vertical coordinates, respectively, and u 
and w are the corresponding components of the wind 
velocity; kx and kz are the coefficients of horizontal 
and vertical turbulent diffusion; v1(r1) are the fall 
velocities of the particles2; a is the adiabatic lapse 
rate; L1 is the specific heat of condensation and sub-
limation, LF and EF are the specific heat and rate of 
freezing of the drops; (f1/t)col is the rate of change 
of the spectra of the drops and crystals owing to 
coagulation and accretion;3,4 and, (T/t)rad is the 
rate of radiation-induced change in the temperature. 

The rate of growth of individual drops r1 and of 
a crystal r2 as well as the local rates of condensation  
Ec1 and sublimation Ec2 are calculated from the for-
mulas 
 

 
 

 (5) 
 

where 1 is the supersaturation above water and ice 
(i = 1 and 2, respectively); kf1 and 1 are the form 
factor and the ratio of the characteristic sizes of a non-
spherical particle (for example, for a prolate ellipsoid 
of revolution with semiaxes a > b, approximating a 

columnar crystal, 2 ,
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2(1 )     (Ref. 3)); a and 1 are the density of 

air, water, and ice; D is the diffusion coefficient of 
vapor; and, qs1 is the saturating moisture content 
above water and ice. 

The expressions J1 and J1a describe the freezing of 
drops and the nucleation of crystals under natural 
conditions, and they can be parameterized In the 
form2,3 
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where r1a are the radii of the activated of condensa-
tion and sublimation nuclei; (x) is the Dirac  func-
tion; 0/

0e
z lN   describes the vertical distribution of 

condensation nuclei; and, 1
  is the distribution of 

the condensation nuclei over the supersaturations 
analogously to the distribution proposed by Tumy.2,3 

 
SYSTEM OF DYNAMICAL EQUATIONS 

 
The system of dynamical equations includes the 

equations of motion for the horizontal components of 
the wind velocity u and v along the x and ó axes, re-
spectively, the equation of continuity for determining 
the vertical wind velocity w, and the equation of state 
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where p is the pressure, R is the gas constant, fc is the 
Coriolls parameter. Introducing the pressure function 
 

 (13) 
 

where  is the potential temperature,   is the aver-
age value of the potential temperature, p0 is the 
standard pressure on the underlying surface, and A is 
the heat equivalent of work, the following substitu-
tions can be made on the right sides of Eqs. (9) and 
(10): 
 

 (14) 
 

We shall write  in the form  = 0 + , where 
0 is the large-scale component of the pressure giving 
rise to the geostrophic wind:  
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 (15) 
 
and  describes the pressure perturbation owing to the 
thermal and orographic nonuniformities. If we study 
processes with horizontal scale Lx  101–102 km and 
vertical scale Lz  0.5–1.5 km, then for Lz ` Lx we 
can write in the quasistatics approximation (assum-
ing that  =  + ,  ` ) 
 

 
 

 (16) 
 

The second relation is the equation of hydrostat-
ics and the third equation relates the temperature 
and pressure perturbations. This relationship depends 
on the scale (Lx  10

2–103 km). Expressing  in 
terms of  with the help of the equations for the 
thermal wind,5 it is possible to represent the terms 
with the pressure gradient in Eqs. (9) and (10) in 
the form of am effective geostrophic wind:  
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where ; 
     ; 

      and, Ug0 and Vg0 

are the components of the geostrophic wind in the 
absence of baroclinicity. These expressions were used 
in the equations of motion (9) and (10), which were 
solved simultaneously with the equation of balance 
of the turbulent energy b, and the similarity and 
dimensional relations for b, its rate of dissipation E, 
the turbulence coefficient kz and the mixing length l: 
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This approach makes it possible, in principle, to 
calculate both the dynamics of mesoscale processes 
in the atmospheric boundary layer and the dynamics 
on warm fronts in the approximation of quasistatics. 
 
METHODS FOR CALCULATING THE SOLAR 

AND LONG-WAVELENGTH RADIATION 
 

The total rate of radiation-induced change in 
the temperature (dT/dt)rad is defined as the sum of 
the rate of long-wavelength cooling (dT/dt)1 and 
the rate owing to the influx of solar radiation 
(dT/dt)s. These and other characteristics of the 
short- and long-wavelength radiation (SWR and 
LWR) were calculated by the two-flux method tak-
ing into account in detail the microstructure of the 
droplet and crystalline phases in the clouds. Thus 

the upward sF
  and downward sF

  spectral fluxes 
of SWR are determined from the equations 
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Here and in Eq. (5) the upper signs correspond to 

sF
  and the lower signs correspond to ;sF

   is the 

single-scattering albedo;  is the optical thickness;  

1,
s
  1,

s
  and v  are the average extinction, scat-

tering, and absorption coefficients of the drops 
(i = 1) and crystals (i = 2) and the absorption coeffi-
cient of water vapor; m1 and ê1 are the real and 
imaginary parts of the refractive indices of water and  
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ice; 
1

cos   is the asymmetry factor of the scattering 

phase function, and, 1r  and p1 are the average effec-

tive radii and indices of the  distributions, which 
are used to approximate the size spectra of the drops 
and crystals. This method and the computational 
algorithm are described in detail in Refs. 6–9. 

To calculate the rate of radiation cooling in a 
cloud layer R1 and the effective radiation of the sur-
face R0 we used K.Ya. Kondrat’ev’s idea for describ-
ing the spectra10 and we solved the transfer equation 
for LWR in the two-flux approximation. In Ref. 11, it 
was shown that the central part of the transmission 
window (8–13 m) makes 90 to 95% of the contribu-
tion to in the bottom 1–2 km and to R0. As a result, 
the entire  spectrum of the long-wavelength radiation 
for modeling low clouds and fogs can be divided 
roughly into only two sections: 1) the region of the 
transmission window and 2) the region outside the 
window, where the fluxes are equal to the fluxes of 
black body radiation. The upward 1F  and downward 

1F  fluxes and the influx R1 = Ñpa(T/t)1 of LWR 
can be calculated in the two-flux approximation: 
 

 (25) 
 

 (26) 
 

 (27) 
 

 (28) 
 

where ,
wF   are the fluxes in the 8–13 m window; 

,
1F   are the integral radiation fluxes; v and Li are 

the average absorption coefficients of the vapor, drops, 
crystals, and aerosol particles; the number of sub-
stances (in addition to the vapor) N = 2; the index 
i = 1 corresponds to the drops; i = 2 corresponds to 
crystals; 0 = 550 cm2/g, ñ1 = 2.26  10–2 m–1, and 
c2 = 8.44  10 m–2. These coefficients were deter-
mined by comparing with data from spectral calcula-
tions.11 
 

INITIAL AND BOUNDARY CONDITIONS AND 
THE SOLUTION ALGORITHMS 

 
The initial fields T and q are given in the form 

 

 
 

 (29) 
 

As the altitude increases the temperature decreases 
linearly from the value T0(x) at the surface, the rela-
tive moisture content at the surface is equal to 
qr0(x), and the undersaturation increases by a factor 
of e at the altitude AD. 

The boundary condition for T at the surface is 
the equation of heat balance while the boundary 
condition for q is the condition that the vapor flux 
be continuous: 
 

 
 

 (30) 
 

 (31) 
 
where ef is the effective condensation coefficient, 
which describes the moistening of the soil; vV  is the 

velocity of the vapor molecules; ,
1F   and ,

sF   are the 
upward and downward fluxes  of long-wavelength and 
solar radiation; and, cs, ps, ks, and   are the heat ca-
pacity, the density, the thermal dlffusivity and the 
temperature of the soil. The value of  was determined 
by solving the equation of heat conduction in the soil 
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 with the boundary condition 

(z) = const. The remaining boundary conditions on 
the underlying surface (at the level of the roughness 

z0) are 1 2 0.
f f b b
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 u = G, v = 0. 

The boundary conditions in the horizontal plane 

for Eqs. (1)—(4) are 0
x





 on both boundaries, 

where  is any of the quantities f1, f2, T, and q. 
The system of equations (1)—(8) was solved by 

the method of componentwise splitting analogously 
to Ref. 12. At the first two stages the horizontal and 
vertical transfer were calculated: 
 

 
 

 (32) 
 
where (1,2) is  any of the  quantities f1, f2, , and q at 
the corresponding stage of the calculations. In calcu-
lating the  vertical transfer the quantities w – v1(r1) 
and w – v2(r2) should be chosen for f1 and f2, respec-
tively, instead of w. 

At the third stage, when condensation, sublima-
tion, and transfer of vapor from drops to the crystals 
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are calculated, we transferred to the equations for 
the supersaturation 1, which is a small difference of 
large quantities q and qs1. The following system of 
equations was solved: 
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 (34) 
 

 (35) 
 

 (36) 
 

where f1 and f2 are the phase-relaxation times for 
drops and crystals, 1 and 2 are the supersaturation 
above water and ice; and, y1 and ó2 are the corre-
spond integral supersaturations. 

In Eq. (33) the first term describes the relaxa-
tion of the supersaturation owing to the efflux of 
vapor onto the drops and crystals, the second term 
describes the relaxation owing to transfer of vapor 
from drops to the crystals (the rate of these proc-
esses decreases as the phase-relaxation time in-
creases), and the third term describes the generation 
of supersaturation owing to vertical motions and 
radiat ion-induced ranges in the temperature. In 
Eq. (34) the corresponding terms describe the change 
in the temperature owing to these processes. 

The equation (32) were solved by the difference 
factorization method12 and Eqs. (33)—(36) were 
solved by the Runge-Kutta method. 

The system of dynamical equations was solved by 
the method of matrix factorization for the components 
of the wind velocity and simple factorization using an 
iterative procedure for the turbulent energy. 

A difference grid that included 31 levels in the 
vertical direction with a step z = 40 m and 61 levels  

in the horizontal direction with a step x = 1 km was 
introduced in the x–z plane. The radial steps in the 
drops r1 = 2 m in the interval 0–20 m and the 
radial steps in crystals r2 = 20 m in the interval 0–
200 m. In solving Eq. (31) the time step t = 150 sec 
and in solving Eqs. (33)—(36) the step size was cho-
sen based on considerations of stability (t  minf1). 
and varied from several to tens of seconds. 

The difference grid chosen makes it possible to 
obtain a quite complete picture of the mesoscale 
processes studied. The range of sizes of drops and 
crystals studied in the model was chosen taking 
into account the data from natural measurements 
and encompassed most of the spectrum of the cloud 
particles. 

The following characteristics of the clouds and 
precipitations were determined from the computed 
distribution functions of the drops f1 and crystals f2: 
the liquid water content qL1, the ice content qL2, the 
average radii and concentrations of the drops 1,r  N1 

and crystals r2, N2, their radar reflectance Z, the hori-
zontal visibility range L, and the intensity I and sum 
S of the precipitation: 
 

 (37) 
 

 (38) 
 

 
 

 (39) 
 

 (40) 
 

 (41) 
 
where t0 is the time at which the precipitation starts. 

We used the model described above to perform 
a series of numerical experiments in order to study 
in detail the mutual effect of optical, radiation, and 
microphysical processes occurring in clouds on the 
crystallization of the clouds. The results obtained are 
published in a separate paper (see Russian 
pages 647–661 of this issue). 
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