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This paper presents formulas which have been derived on the basis of Young’s 
representation and new data on the edge wave, which relate the intensity distribution of 
the diffraction pattern from a slit to the light intensity in the image plane with no slit and 
to the parameters of the diffraction experiment. 

A comparison is made of the intensity of the diffraction pattern calculated using these 
formulas with the experimental values and the values calculated using the Fresnel formulas. 

 
 

In three recent papers1–3 in this journal I pre-
sented new facts concerning the characteristics of the 
edge wave and demonstrated on this basis that the 
diffraction pattern produced by a screen results from 
interference between the edge and the incident waves. 
In this case the diffraction distribution outside the 
projection of the slit must result from interference 
between the edge waves propagating from the two 
screens opposite each other, which form the slit. I will 
now demonstrate that this is indeed the case. 

Figure 1 schematically shows a cylindrical wave 
diffracted by a slit S2. Here l is the distance from the 
linear light source (slit S1 of width t0 = 60 m, il-
luminated by a parallel ray of green light with 
wavelength  = 0.53 m) to S2; L is the distance from 
the slit S2 to the plane in which the diffraction dis-
tribution is scanned by the slit S3; H1, H2, and h are, 
respectively, the distances from the light bands to the 
edge of the geometric shadow and to the ray propa-
gation axis. 

As should be obvious, the positions of the bands in 
the diffraction pattern are determined by the path 
difference  between the edge rays 1 and 2. Since ray 
2, which deviates to the side from the edge of the slit, 
at this moment experiences a forward phase shift of 
0.69 (it propagates from the slit edge), while ray 1, 
deviating into the shadow zone, acquires a backward 
phase shift of 0.31 (see Ref. 1), ray 2 appears to be 
ahead of ray 1 by  (equivalently, /2) from the very 
start. Therefore,  = (g – /2) = (Ht/L – /2) 
= k/2, where g is the geometric path difference. 
Hence h = (k + l)L/t. For k = 2, 4, 6 , rays 1 
and 2 meet after accumulating a phase difference  
equivalent to an integer number of wavelengths  and 
produce illumination maxima. For k = 1, 3, 5, , 
illumination minima are produced. 

Because of the existence of an initial path dif-
ference between the diaphragmed rays 
hmin1 = L/t = (hmin2 – hmin1), so that the central 
maximum is twice as broad as the side ones. 
 

If we take k to be the number of half-waves in g, 
then 
 

 (1) 
 

and k = 3, 5, 7, correspond to the maxima, and 
k = 2, 4, 6,  — to the minima in the intensity 
distribution. This formula differs somewhat from the 
distribution found in the experiment, as indicated, for 
example, by the data in Table I, which characterize 
the diffraction of light from a slit 95.2 m wide. In 
this table hexp are the experimental values of h; teff is 
the effective slit width, teff = kL/2hexp; t is the 
difference between the actual (tact) and the effective 
(teff) slit widths; hcal are the calculated distances to the 
bands; / 2cal effh k L t   where efft  is the average 

value of teff, found from the bands hmin2 through hmax4, 
the latter extrema corresponding to the range of slow 
decay of the edge wave.1 In the considered case we have 
teff = 91.3 m, i.e., it is 4 m less than tact. It may be 
concluded from act this result that light rays producing 
bands of orders higher than max2 diffract at a distance of 
approximately 2 m away from the edge of the slit. 
 

 
 

FIG. 1. Block diagram of a cylindrical wave 
incident on the slit. 
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As can be seen from Table I, within the margin of 
error of our measurements the values hexp are ap-
proximately equal to hcal for every band except max2, 
where h = (h – hcal) is significant. The problem is 
that due to the rapid decay of the edge ray intensities 
around the position of max2, it is displaced toward the 
diffraction pattern axis from its computed position by 
such a distance, that the increase in the intensity of the 
interfering edge ray is compensated by its diminution 
due to larger phase differences. 

In contrast to max2, min1 tends to shift from its 
computed position away from the distribution axis.  

This shift continues until the decay in the overall 
intensity of the interfering rays, due to the decreasing 
relative difference betweenH1 and H2, is compensated 
by an increase in that same intensity. The latter effect 
is due to the growing deviation of the phase shift from 
its optimal value. The displacement of min1 is less 
spectacular than that of max2, since the overall in-
tensity of the former due to incomplete extinction of 
rays I and 2, which in turn is due to the inequality of 
H1 and H2, is low, and the decrease of that intensity at 
higher h is therefore already suppressed when the 
phase differences are quite small. 

 

TABLE I. 
 

 
TABLE II. 

 

 
TABLE III. 

 

 
 

In principle, the above shift embraces all the 
bands, but as the band order increases, the shift should 
become less and less noticeable. 

The considered features are also supported by the 
data from Table II, which characterize the diffraction 
of a plane wave at a slit tact = 147 m 
(L = 217.5 m). 

If a cylindrical wave is diffracted by a wire of 
actual diameter dact = 61 m (see Fig. 2, 
 = 83.2 m), the edge rays 1 and 2 are deviated by this 
wire. As a result, the wire’s inferred average diameter, 

,d  found from hexp, min2, and max3, exceeds its actual 
diameter by 4.2 m (see Table III). 

The disagreement of efft  and d  with tact and dact 

gives an additional proof of the existence above the 
surface of bodies of a zone in which a light ray entering 
it is deviated from its initial direction.4–7 

If this approach is justified, the band intensity in 
the diffraction pattern J should be given by the de-
pendence Jact = A/H2 formulated in Ref. 1, which 
characterizes the dependence of the intensity distribu- 
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tion Jact in the edge wave on the distance H from the 
geometric shadow. The value of A should be constant 
for bands of different orders. According to Fig. 1, 
 

 
 

 
 

 
 

FIG. 2. Light diffraction by a wire. 
 
The amplitudes of the edge waves are then equal to 
 

 
 

 
 
Due to the finite width of the slit S1, there will be a 

spread in the value of P equal to 0 ,
2
t L

P
l

     thus 

introducing errors into the amplitude values. For the 
diffraction pattern maxima we have 
 

 
 

 
 

 
 

 
 

 (2) 
 
At the same time, according to Eqs. (2) (see Ref. 2), we 
have for the cylindrical wave 

0.02046 ( )
.incL L l J

A
l

  
  Here Jinc is the incident 

ray intensity in the diffraction plane (the plane in which 
the diffraction pattern is scanned) at the edges of the 
geometric shadow if the slit S2 is displaced from the ray. 

Hence, 
 

 
 

 (3) 
 

where h = hcal, t = teff
–

 or tact – 4 m, and 
2t4(l + L/l)2 n (kL)2. For example, for 
t = 0.155 m, k = 3, L = 189 m, and l = 100 mm, 
the first expression is 9.4 times less than the second. 
Then the intensities of the maxima in the diffraction 
pattern produced by the slit S2 are roughly propor-
tional to the squared width of the latter. At first 
glance, this result should points to the dependence of 
J in the bands on the whole open part of the wave-
front. However, as is clear from the above reasoning, 
this is not the case. 

We have for the slit-generated diffraction minima 
 

 
 

 
 
Therefore 
 

 
 

 (4) 
 
Solving Eqs. (4) and (2) together,2 we find 
 

 
 

 (5) 
 

It can be seen that the band intensities Jcal com-
puted from relations (3) and (5) agree with the ex-
perimental values Jexp, and that A is constant for bands 
of various orders of diffraction. The data from Ta-
ble IV, which describes the diffraction of a cylindrical 
wave at a slit tact = 159 m (L = 189 m, 
I = 100 mm, efft  = 155.2 m, as found from teff for 

min2 through min4 Jcal = 1030 rel. units), testify to 
this fact. The value Jexp in this table gives the in-
tensity at hcal. 
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Table V gives the values of A found from Jmax2 at 
one and the same Jcal for various slit widths. As can be 
seen from the table, within the measurement accuracy 
margin the value of A remains constant for various t. 
This circumstance shows that the diffracted flux does 

not depend on the slit width (obviously, this is true for 
not too narrow slits). It can be easily understood if we 
recall that the total flux is produced by the rays not from 
the entire wavefront covering the overall slit width, but 
from the narrow areas around its edges. 

 
TABLE IV. 

 

 
 

The latter statement is also supported by the 
coincidence of the intensities of the maxima plotted vs 
h for various slit widths. 
 

TABLE V. 
 

 
 

The adequacy of the obtained relations and the 
constancy of A are also illustrated by Table VI, which 
contain data on the diffraction of a cylindrical wave by 
a slit tact = 95.2 m, for l = 36.2 mm, L = 112 mm, 

efft  =91.6 m, and Jinc = 1271 rel. units. 

For a plane wave (l = ) relations (2), (4), (3), 
and (5) become 
 

 (6) 
 
 

 (7) 
 

 (8) 
 

 (9) 
 

Tables VII and VIII demonstrate that under these 
conditions the value of A is constant, and the com-
putational results from formulas (8) and(9) and ex-
periment mutually agree. 

The values of A in Table IX, found from the Jmax2 
values for different slit widths for Jinc = const 
(L = 99.5 mm) demonstrate that even for a plane 
wave the value of A still remains independent of t. 

To derive a relation giving the values of J in the 
diffraction pattern Jact for arbitrary h > p and a 
cylindrical wave, we employ the addition rule for 
adding coherent oscillations 
 

 (10) 
 
where  is the phase difference between the first and 
the second rays (see Fig. 1). Substituting the values of 
A from formula (2) (see Ref. 2) into the expressions 
for J and Jact1 and Jact2 (see above) together with P we 
find that  
 

 (11) 
 

 (12) 
 

where t = efft  or tact – 4 m. Since  the path difference 

from ray 1 to ray 2 is equal to 
2

,
2

ht L
L
 

 we obtain 

 

 (13) 
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TABLE VI. 
 

 
 

TABLE VII. 
 

 
 

TABLE VIII. 
 

 
 

TABLE IX. 
 

 
 

Replacing Jact1, Jact2, and  in formula (10) by 
their values from formulas (11), (12), and (13), we 
may, after some rather simple transformations, express 
Jact in terms of Jinc, , and the parameters of the 
diffraction scheme: 
 

 
 

 
 

 (14) 

 

where t = efft  or tact – 4 m. Since l =  for the 

plane incident wave, formula (14) simplifies to yield 
 

 
 

 (15) 
 
Let us compare the computational results from the 
above formulas with the experimentally obtained 
values (Tables X–XII,  = [(h – P)/L]  57.3). It 
follows from the tables that the disagreement between 
Jexp and Jact starts from approximately  < 0.085, i.e., 
from the moment the inverse proportionality between 
the edge wave amplitude and the deviation angle of the 
diffracted ray ceases to be valid.2 Sometimes during 
diffraction of a cylindrical wave by a slit the value of J 
may become different from the computed value for the 
sides of the maxima. Moreover, if the value of J becomes 
larger (smaller) than the corresponding value of Jact in 
the remote diffraction band wings, the corresponding  
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pattern in the near band wing becomes exactly the 
opposite. The reason for this interdependence may be 
understood from Fig. 3. It can be seen that the dif-
fraction pattern produced by the slit S2 is essentially a 
sum of patterns produced by the sources x and ó of rays 
diffracted by the edges of S1. The overall pattern from 
source x is then shifted away from the scheme axis with  

respect to the pattern that would have been observed if 
we had accounted for the path difference between rays 1 
and 2 only, and which would have resulted from the 
initial phase difference of  not only between rays 1 and 
2 but also between rays 1 and 2 preceeding the former, 
and due to the headstart ray 2 has over ray 1 (by 
(0.5 – tt0/l)). 

 
TABLE X. 

 

 
 

 
 
FIG. 3. Block diagram explaining the reason for 
the redistribution of the light intensity within 
the bands of the diffraction picture of the slit 
from the far to the near sides, and vice versa 

 
Since ray 4 lags in its phase behind ray 3 by the 

same margin, the diffraction pattern produced by rays 
3 and 4, which derive from rays 3 and 4, is shifted 
toward the scheme axis. Consider the case in which 
the intensities of x and ó differ because of the in-
homogeneous intensity distribution in the parallel ray 
incident upon the slit. It is easy to see, taking the 
above into account, that the value of J to the left of 
the maxima would be either amplified or suppressed 

in comparison with the case of constant light intensity 
over the slit width S1, and suppressed (amplified) — 
to the right of them. 

If the intensity of the light incident upon the slit 
S2 is inhomogeneous at its edges, which is the case, for 
example, when S2 is asymmetrical with respect to S1, 
and the width of the central maximum of S1 is 
comparable to the width of S2, then the effect of 
interference of rays 1, 2 (see Fig. 1) and of rays 1, 2, 
3, and 4 (Fig. 3) will be weakened. As a result, there 
appears a background decreasing the band contrast. 

According to Fresnel8 the intensity of the slit 
diffraction is equal to 2 2 ,F F FJ C S   where 
 

 
 

are the Fresnel integrals. 
When a plane wave diffracts off a screen with a 

sharp straight edge (Fig. 4), the parameter v is 

expressed as v = 2 / L  (Ref. 9). At the same 
time, the geometric path difference between rays 1 
and 2, propagating from the edge A to some point Q 
of the diffraction pattern and to the wave pole B 



Yu.I. Terent’ev Vol. 3,  No. 9 /September  1990/ Atmos. Oceanic Opt.  889 
 

 

respectively, is equal to g = h2/2L = k/2. 

Hence h 2 / 2 ,L k   i.e., the value of v is equal 
to the square root of the number of wavelengths 
which fit into g. Based on the above, it is quite 
simple to find the values of v1 and v2 when a plane 
wave diffracts on a slit. They are equal, respec-
tively, to 
 

 
 

 
 

FIG. 4. Diffraction of a plane wave by a screen 
with a straight edge. 

 
TABLE XI. 
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TABLE XII. 
 

 
 

Table XIII compares the values of JF computed 
for the diffraction pattern bands L = 130.3 mm, 
tact = 184.3 m, efft  = 180.3 m with the experi-

mental intensities (see Table VII). 
 

TABLE XIII. 
 

 
 

Here the values of 1FJ  and 2FJ  are the Fresnel 
reference band intensities, normalized to the value 
of Jinc (equal to 2560 rel. units), by the relations 

1FJ   JF1Jinc/JFinc, 2FJ   JF2Jinc/JFinc. In these 

formulas JF1 and JF2 denote the intensities found using 
the Fresnel integrals10 for the values of efft  and hp, tact 

and h; and FincJ  is the intensity produced by a com-
pletely opened wavefront (according to Fresnel). The 

latter is equal to  22 22 0.5 0.5 = 2, where 0.5 is 

the limiting value of the Fresnel integrals. 

TABLE XIV. 
 

 
 

Consider a cylindrical wave diffracting at a slit 
(Fig. 1). Since 2 ,v k  and k is equal to the 
number of half periods which fit into the geometric 
path difference between the rays propagating from the 
source to the observation point via the wave pole and 
the slit edge, we have 
 

 
 

 
 
Applying these expressions, we may calculate the 
diffraction band intensities produced by the slit. 
The chosen experimental parameters were as fol-
lows: L = 112 mm, l = 36.2 mm, tact = 95.2 m, 

efft  = 91.6 m, and Jinc = 1271 rel. units (see 
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Table VI). The corresponding computational results 
are shown in Table XIV. 

As can seen from Tables XIII and XIV, in con-
trast to Jcal, the values of 2FJ  deviate significantly 
from the experimentally found intensities in low 
diffraction orders. However, for higher diffraction 
orders these differences gradually diminish. 
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