
Yu.P. Akulinichev and A.M. Golikov Vol. 3,  No. 10 /October  1990/ Atmos. Oceanic Opt.  969 
 

0235-6880/90/10  969-3  $02.00  © 1990 Institute of Atmospheric Optics 
 

LIMITING FORM OF THE COHERENCE FUNCTION OF A FIELD 
IN A LAYERED NONUNIFORM MEDIUM 

 
 

Yu.P. Akulinichev and A.M. Golikov 
 
 

Tomsk Institute of Automatic Control Systems and Radioelectronics 
Received April 13, 1990 

 
 

It is shown in the Markovian approximation, that as the optical thickness of a layer 
of nonuniformities increases the spatiotemporal coherence function of the random Green’s 
function becomes Gaussian. It is shown that the form of this function is determined by the 
geometric parameters of the layer and the component of the wind velocity that is per-
pendicular to the propagation path. Methods for measuring these parameters by remote 
sensing in the case of isotropic turbulence are analyzed. 

 
 

Let the propagation of waves in a layered non-
uniform medium in a direction nearly along the Oz 
axis be described by a parabolic equation.1 

We assume that the fluctuations of the dielectric 
constant of the medium are statistically homogeneous 
in the xoy plane and in time and quasi homogeneous 
along the oz axis, and that they are characterized by 
the spatiotemporal correlation function 
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the vector v(z) is the component of the wind where 
velocity that is perpendicular to the propagation path; 
0 = (, z, ; z) is the spatiotemporal correlation 
function of the fluctuations of the field  in the absence 
of wind and is obtained by averaging over an ensemble. 

Assuming that along the path the nonuniformities 
are much smaller than the path length 2L, we employ 
the Markovian approximation1 and we write the 
normalized spatiotemporal coherence function of the 
random Green’s function G(2, z2; 1, z1; t) as a 
function of the spatial separation across the path as 
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is the extinction coefficient; and, 
 

 
 

 
 
is the normalized structure function of the phase, i.e., 
 

 
 

We shall study the limiting case when the optical 
thickness of the layer 
 

 (3) 
 
so that the forward multiple scattering components 
predominate, the nth order scattering phase function is 
the n-fold convolution of the cross section of the 
spatial spectrum of the fluctuations   (Ref. 2) and 
therefore the region of small values of  is important. 

For small values of  and  and any real spectra of 
nonuniformities the parabolic approximation is ap-
plicable for the function H(, ; z): 
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where   is a column vector; B(z) is a matrix of second 
derivatives with respect to õ and ó at  = 0; and, 
for convenience, the ox and oy axes can always be 
chosen so that the matrix Â is diagonal. 

In particular, for homogeneous and isotropic 
turbulence the Kolmogorov-Obukhov 2/3 law is 
widely used. In this case, we have1 
 

 
 

 
 

 
 

After substituting Eq. (4) we obtain for the 
coherence function (2) the Gaussian form 
 

 
 

 (5) 
 
where 
 

 
 

 
 

 
 

 
 

 
 
I is the unit matrix; Z0 is a diagonal matrix, whose 
elements are fixed by the condition W1 = 0 (in the 
case B(z)xx = B(z)yy they are both equal to the 
coordinate z0 of the center of the layer). 

Thus in the limiting case the coherence function 
of the field is completely determined by the following 
parameters of the layer (if the separation vectors 1 
and 2 are collinear, then the quantities appearing in 
the formula (5) can be assumed to be scalars); the 
coordinate of the center of the layer z0 and the relative 
mean square thickness 2 1

0 2W W   along the oz axis; 
the integrated values of the structure constants in 
space W0 and in time q; the mean 1

0 0v v W   and the 

mean square 2 1
0v sW   of the component of the wind 

velocity v(z) normal to the propagation path, as well 
as the average value of its linear part 1

1 1 0v vW   (the 
last parameter takes into account the fact that the 
wind velocity can vary along the propagation path; 
this is manifested primarily in the fact that it is a linear 
function of the coordinate z). 

With the help of the formula (5) the appropriate 
methods for estimating different parameters of the 
layer by remote sensing can be easily analyzed and the 
most accurate methods can be chosen. 

1. To estimate the coordinate of the center of the 
layer z0 the correlation coefficient at coincident times 
( = 0) on all possible pairs of crossing propagation 
paths with p = 0 and c = const are measured, and the 
particular pair on which the coefficient is maximum is 
chosen; then z0 is the coordinate of the crossing point of 
these paths.3,4 

2. The relative mean-square thickness of the layer 
is numerically equal to the ratio of the intervals of 
spatial correlation of the signals on parallel (c = 0) 
and crossing (p = 0) paths.4 

3. The quantities z0 and  can also be estimated 
simultaneously after the correlation intervals are 
measured simultaneously on parallel, crossing, and 
converging (2 = 0) (or diverging (1 = 0)) paths. 

4. If the position z0 and the thickness  of the 
layer are not known, then the mean value of the 
transverse component of the wind velocity v  is best 
measured on parallel paths, in contrast to the tradi-
tional method of measurement on diverging paths.5 

5. The most reliable method for estimating the 
characteristics of the wind v  and 1v  is the method of 
measurement based on the slope of the coherence 
function (1, 2, )/ at the zero point ( = 0) 
on parallel and crossing paths, respectively.6 

In addition, it is very convenient to use the co-
herence function in the form (5) to estimate the dis-
tortions of the field in a medium in the presence of 
large or spatially separated receiving and transmitting 
apertures, especially if the Gaussian approximation is 
employed for them also.7,8 

In conclusion we shall estimate for the case of 
homogeneous isotropic turbulence the error in the 
estimate of some parameters of the layer owing to the 
fact that the real coherence function (2) is different 
from its approximation (5). For example, the ratio of 
the correlation intervals on parallel paths, determined 
at the 1/e level from the formulas (2) and (5), is equal 
to –0,1(L0/l0)

1/6 and can reach several units for large 
values of L0/l0. 

Significantly better results can be expected when 
measuring the relative characteristics, in particular, 
the ratio of the correlation intervals on parallel and 
crossing paths 0. For L0 p l0 from the formulas (2) 
and (5) we have 0 = (3/8)3/5  0.5552 and 
0 =  = (1/3)1/2  0.5773, respectively. The dif-
ference is only 3.8%, which is fully acceptable for most 
practical problems. 
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