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An algorithm for describing the processes of coagulation in the trails of bright meteors 
and for calculating of the optical characteristics of the dust trails formed by these meteors 
is developed. The model of quasi continuous fractionation of the meteor bodies in the 
atmosphere is assumed and the dependence of the coefficient of heat transfer on the mass 
of the body is taken into account. The initial spreading of the trail in the establishment 
of the thermal equilibrium with the atmosphere is treated as a linear explosion on the axis 
of the trail, and its consequent spreading is caused by turbulent diffusion. It is shown that 
the model of thermal coagulation unlike the model of Brownian coagulation is applicable 
to real meteor trails. 

According to the numerical calculations there appear every day in the Earth’s at-
mosphere about one hundred optically dense meteor dust trails which can be observed in 
the day time from space in the spectral range 0.24–0.26 m or during dusk from the 
Earth’s surface in the spectral range 0.3–1.0 m. 

 
 

INTRODUCTION 
 

Dust particles with masses more than 10–8 g, 
which enter the atmosphere from outer space are 
almost completely evaporated in the upper atmos-
phere. In so doing gaseous trails are formed in which 
the partial pressure of the vapors of meteoric matter 
(SiO2, MgO, Fe2O3, CaO, Al2O3, etc.) is several 
orders of magnitude greater than the pressure of the 
saturated vapors of this latter at the atmospheric 
temperature, and, therefore, condensation-coagulation 
processes leading to the formation of meteor dust trails 
are initiated. Dusk observations show that very bright 
meteors (bolids) can produce thick dust trails which 
are visible for tens of minutes, spreading during this 
time up to hundreds of meters in the lateral direction 
and bending under the action of the altitude gradients 
of the wind velocity.1 

Owing to the diffuse spreading of the trail, the 
concentration of the vapors of the meteoric matter and 
the smallest nuclei of the dust particles arising in the 
trail falls off rapidly, wherefore, the coagulation can 
be sufficiently efficient only at the initial stage of the 
meteor trail existing when the initial concentration of 
vapor is considerably high. In this connection, an 
adequate description of the processes of formation of the 
initial structure of the meteor gas trail and its subse-
quent diffuse spreading is a matter of great importance. 

The dust trails of bolids generate the strongest 
inhomogeneities in the light scattering characteristics 
in the middle atmosphere at altitudes 30–100 km. In 
this respect, only luminous clouds (which appear 
sometimes within the very thin layer of the mesopause 

near the polar latitudes) can compete with the dust 
trails. It is most probable in this case that the water 
vapor condensation nuclei in luminous clouds are small 
dust particles of meteoric origin. 

Dust trails of the bolids can be observed not only 
from the Earth’s surface during dusk when they are 
illuminated by the direct solar rays. At the altitudes 
higher them 45 km the dust trails sire found to be 
quite visible in the UV range during the daytime from 
onboard spacecraft at the maximum of the absorption 
band of ozone (0.24 – 0.26 m) against the back-
ground of the Earth’s daytime atmosphere, which is 
very dark in this spectral range. Taking into consid-
eration the variety of extra-atmospheric velocities and 
angles of entrance into the atmosphere of the meteor 
bodies, the dust trails may be similar to the trails of 
rockets due to condensation on those segments of their 
trajectories where the rocket engines are operated. 

In this paper the stages of formation and de-
struction of the meteor gas-dust trails are studied, the 
optical characteristics of the trails are calculated, and 
estimates are made of the critical masses of meteor 
bodies with different velocities and densities and 
whose trails can be revealed with the help of different 
observational methods (laser sounding, ground-based 
twilight and spaceborne observations). 
 

THE INITIAL STAGE OF FORMATION  
OF THE METEOR TRAIL 

 
Since the dust trails observed from the Earth’s 

surface usually are due only to bright meteors gen-
erated by sufficiently large meteor bodies with starting 
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masses M0 > 1 g, we are primarily interested in the 
trails of large meteor bodies. 

For these meteor bodies in the first approximation 
we can neglect the time of evaporation of the fragment 
in comparison with the time expended for the complete 
destruction of the meteor body after starting its qua-
sicontinuous fractionation. Then the evaporation rate 
of the meteor matter can then be written as4 

 

 (1) 
 
where M and v are the mass and velocity of the meteor 
body at the altitude h,  is the density of the at-
mosphere,  is the coefficient of heat transfer, A is the 
shape coefficient of the meteor body, 0 and Qg are the 
density and specific energy of fractionation of the 
meteor body. 

In the isothermal atmosphere 
 

 (2) 
 

where dl is the segment of the path along the visible 
trajectory of the meteor, z is the zenith angle of the 
meteor radiant (the angle concluded between the ve-
locity vector of the meteor and the plumb line), and H is 
the reduced altitude of the homogeneous atmosphere. 

From Eqs. (1) and (2) we find 
 

 (3) 
 

Integrating Eq. (3) for constant , A, and v, we obtain 
 

 (4) 
 

where v0 is the extra-atmospheric velocity of the 
meteor body. 

We find from Eqs. (1), (2), and (4) the mass of 
the evaporating matter of the meteor per unit length of 
the meteor path 
 

 (5) 
 

the maximum value of dM/dl 
 

 (6) 
 

the density of the atmosphere m at the altitude hm at 
which the evaporation rate is maximum 
 

 (7) 
 

and the density of the atmosphere t at the altitude ht 
where the trail terminates t = 3m. 

In accordance with Eq. (5) we take 
 

 (8) 
 

where M0 is measured in grams. 
The meteor trails with masses M0 > 1 g start to 

spread explosively because of the almost instantaneous 
release of the large amount of kinetic, energy of the 
evaporated meteoric matter along the axis of the trail. 
The initial radius of the meteor trail Ri can be esti-
mated from the condition of equality of the kinetic 
energy density of the thermal motion of the molecules 
in the unperturbed atmosphere 
 

 (9) 
 

where Ca is the concentration of molecules in the 
atmosphere, T is the atmospheric temperature, and k is 
Boltzmann’s constant. 

From Eqs. (5) and (8) we obtain 
 

 (10) 
 

Subsequent spreading of the trail occurs under the 
effect of turbulence. Since the sizes of the particles (as 
well as their masses) in this stage are still at the 
molecular level, we use Richardson’s law to describe 
this spreading7 
 

 (11) 
 

where l
*
(t) is the effective diameter of the cloud, 

which is related to the radius of two-dimensional cross 
section R0 by the expression 
 

 (12) 
 

a is the constant in Richardson’s law, whose value lies 
within the limits 0.1–0.3 according to studies per-
formed by other authors (we will take a = 0.2),   is 
the average value of the rate of dissipation of the 
turbulent energy. From Eqs. (11) and (12) we can 
derive an equation for 2

0 ( ) :R t  
 

 (13) 
 

i.e., 
 

 (14) 
 

where the time t is counted from the moment of 
termination of the formation the initial radius Ri of the 
meteor gas trail. 
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COAGULATIONAL EVOLUTION  
OF THE PARTICLE MASS SPECTRUM 

 

The natural quantization of particle masses at the 
microscopic level is determined by the average mass of 
the single molecule of meteoric matter m1  10

–22 g. 
Let Cn be the concentration of n-dimensionals, i.e., 
particles with masses mn = n  m1. The spectral 
evolution of the particle masses can be described by the 
well-known coagulation equation8 
 

 
 

 (15) 
 

where C0n is the initial distribution and Kij is the 
coagulation coefficient. 

In the meteor trails at first very small particles are 
generated. Their concentration is quite high (about 
1011–1013) and the inequality Kn n 1 holds true for 
them. Therefore, the Brownian model of coagulation 
caused by thermal motion is applicable and the coef-
ficient of coagulation can be written as 
 

 (16) 
 

where ri and rj are the radii of the coagulated particles, 
which are assumed to be spherical, i. e., 
 

 (17) 
 

Íåãå  is the density of the particle material. 
However, as the coagulation develops in the trails 

of very bright bolids, quite large particles can also 
appear. To these particles it is necessary to apply the 
Brownian model of coagulation with coefficient of 
coagulation (Kn . 1) 
 

 (18) 
 

where Di and Dj are the diffusion coefficients of the 
particles. 

We can us find the limiting value of the radius r0 
of the particles for which the coefficients of the 
Brownian and thermal coagulation are identical, i.e., 

, , .T
i j i jK K  To simplify the calculation, we take 

ri = rj and mi = mj. Then 
 

 (19) 
 

 (20) 
 

where ma is the mass of an air molecule and Ca is the 
concentration of the air molecules Equation (20) 
employs the following expression for the coefficient of 
diffusion: 
 

 (21) 
 

Equating ,
T
i jK  to ,i jK  we obtain from Eqs. (19) 

and (20) 
 

 (22) 
 

Substituting the numerical values 
ma = 4.8  10–23 g and  = 2.5 g/cm3 (for stone 
meteor bodies) into Eq. (22). we derive 
 

 (23) 
 

where Ca is in cm–3. 
Equation (23) for the altitude interval of interest 

30–70 km yields 
 

for h = 30 km, r0 = 0.4 m, 
 (24) 

for h = 70 km, r0 =14 m. 
 

The limiting value of the particle radius 0r  at 
which we transfer over from the model (16) to (18) can 
be estimated under the following condition: to change 
the direction of the velocity vector by the angle /2 a 
particle with mass mj must undergo about mj/ma 
collisions with molecules of air. Regarding the particle 
as almost immobile in comparison with the molecules 
of air and neglecting the radius of the molecule in 
comparison with rj, we can find the time interval t in 
which the particle undergoes mj/ma collisions with the 
molecules of air, 
 

 (25) 
 

where 
 

 (26) 
 
is the average thermal velocity of the molecules in the 
atmosphere. In this time the particle travels a distance  
 

 (27) 
 

In order that the particle diffuses a distance ri the 
condition j iv t r   must be satisfied. If ri = rj and 

,j iv t r   we find a limiting value of the radius of the 

particles for  = 2.5 g/cm3 from Eqs. (25)–(27) 
 

 (28) 
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where Ca is in cm–3, which is close to relation (23). 
If 0ir r.  the Brownian coagulation model with 

coagulation coefficient (18) is applicable, and if 0ir rn  
the model with coagulation coefficient (16), and for 

0ir r  interpolation between Eqs. (16) and (18) must 
be employed. 

Only model (16) is applicable for the meteor trails 
at altitudes h > 30 km, in which nothing but very 
fine particles with ri  0.1 m are generated. Equa-
tions (19), (20), and (24) show that the use of the 
model (18) will result in a very large overestimation of 
the efficiency of coagulation in the meteor trails. This 
is the error that was committed in Ref. 8. 
 

SYSTEM OF GENERALIZED COAGULATION 
EQUATIONS 

 
To make the system (15) practically solvable by 

numerical methods using modern computers, it is 
necessary to "generalize" it. Let 
 

 
 
i.e., Ck is the concentration of the particles whose 
masses lie in the interval 2k–1m1  m  2km1. Let km  

be the characteristic mass and kr   be the characteristic 
radius of the particles In this interval, i.e., 
 

 
 

 (29) 
 
and kr  is related to km  by the relation 
 

 (30) 
 

The concentration Cn is assumed to vary smoothly 
in the kth interval (i.e., when 2k–1  n  2k–1) and 
the coefficient of coagulation Ki,j varies smoothly as i 
runs through the lth interval, and j through the kth 
interval. Then, employing the relation 
 

 (31) 
 
and introducing the ensemble-averaged coagulation 
coefficient 
 

 (32) 
 
we obtain from Eq. (15) a system of generalized 
coagulation equations for Ck (k = 1, 2, 3, ): 
 

 (33) 
 
where 
 

 (34) 
 

 (35) 
 
Here 
 

(36) 
 

(37) 
 

= 
 

(38) 
 

Taking Eqs. (36)–(38) into account, we obtain 
 

 
 

 
 

 
 

 
 

 (39) 
 

System (33) is nonlinear. Therefore, to solve it, we 
employ an iterative scheme based on the finite-difference 
approximation. Transformation from Ck(t) to 
Ck(t + t) is performed according to the scheme 
 

 (40) 
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where s is the iterative parameter, the tilde () atop 

kP  and kL  indicates that in calculating their values 

according to Eqs. (34) and (35) 
( )s

kC  is to be used 
 

 
 

 (41) 
 

We continue the iterative procedure (40) until the 
increment 
 

 
 

becomes less than some prescribed value. At this point 
we are forced to truncate the spectrum at the corre-
sponding value of k. 

lt is necessary to take into account that the 
concentration of all of the particles in the trail de-
creases. This is due to the spreading of the trail. At 
each moment of time t the particles are assumed to be 
uniformly distributed within a cylinder of radius R0(t) 
and their concentration approaches zero at the distances 
R > R0(t) away from the axis of this cylinder. The 
value of is found with the help of Eq. (14). After using 
procedure (40) to perform the coagulative stage of the 
transformation from Ck(t) into Ck( t + t), we obtain 
 

 (42) 
 

and again all of the particles are assumed to be uni-
formly distributed within the cylinder of the new 
radius R0(t + t). 
 

NUMERICAL REALIZATION) OF THE 
COAGULATIVE STAGE 

 

Referring to system of equations (33) we trans-
form to the dimensionless time 
 

 (43) 
 

and the dimensionless concentrations 
 

 (44) 
 

Using Eqs. (33)—(35) and (43)—(44), we obtain 
a system of equations for Ck: 
 

 
 

 
 

 
 

 
 

where 
 

 (46) 
 

Since initially the meteor trail consists of only 
molecules of evaporated meteoric matter, we set 
C02 = C03 =  = 0. Subsequently the solution of 
system (45) becomes universal, i.e., after solving 
Eq. (45) once, with the help of the equation 
 

 (47) 
 

which is the a consequence of Eq. (44), we find the 
solution of Eq. (33). 
 

THE PARAMETERS OF THE METEORIC BODIES 
AND OF THE SMALL DUST PARTICLES  

IN THE TRAIL 
 

In accordance with Ref. 5 let us consider the three 
most characteristic types of meteoric bodies: ferrous, 
ordinary, and carbonaceous chondrites CI, in which 
0 = 7.7 g/cm3 and Qg = 1.3  1010 erg/g, 
0 = 3.5 g/cm3 and Qg = 1  1010 erg/g, and 
0 = 2 g/cm3 and Qg = 0.4  1010 erg/g, respectively. 

The density of the small dust particles in the trails 
of ferrous meteoric bodies is assumed to be 
 = 7.8 g/cm3, and the refractive index is assumed to 
be m = 1.28 – 1.37i (Ref. 3). As any stone meteorite 
consists mainly of SiO2, we take m = 1.5 for all types 
of stone meteorites. 

The volume scattering coefficient of radiation with 
wavelength  in the trail can be written in the form 
 

 (48) 
 

where K( ,kr  m, ) is the scattering efficiency of the 
dust particles. 

Since only very small dust particles are generated 
in the meteor trails for which 
 

 (49) 
 

one can use the Rayleigh approximation3 to calculate 
their scattering efficiency 
 

 (50) 
 

Numerical values of K( ,kr  m, ) for quartz and fer-
rous particles are given in Ref. 3. 
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TABLE I. Mean radii ,kr  of quartz particles with different k (k-dimensionals). 
 

 
 

TABLE II. Temporal behavior of R0 and s in meteor trails generated by a meteoric body with M0 = 100 g, 
0 = 3.5 g/cm3, and cos z = 0.6 at an altitude hm = 59 km for initial velocities of 15 and 30 km/sec. 

 

 
 

RESULT OF NUMERICAL CALCULATIONS 
 

We have obtained numerical solutions of the 
problem for different values of the parameters of the 
meteoric bodies M0, v0, and 0. Table I shows the av-
erage values of the radii kr  of quartz particles with 

different values of k (k-dimensionals). To illustrate the 
dynamics of the coagulation in the bolid trails, Table II 
shows the temporal change of some of the characteris-
tics: the radius of the trail R0, the coefficient of relative 
turbidity of the trail s = m/a (where a is the volume 
coefficient of Rayleigh scattering of light due to air 
molecules at the given altitude), the values of 
k = k(Cmax) for the particles whose concentration is 
maximum, the values of k = k(smax) for those particles 
which give the main contribution to s, the maximum 
value k = kmax for which the particle concentration has 

still not fallen to zero. Table II presents the results 
calculated for the trails of two bolids. 

One can see from Table II that the efficiency of 
coagulation falls off as the bolid velocity v0 increases (as 
a result of the growth in this case of the altitude and 
initial radius of the trail R1 are increased), and as the 
mass M0 and density 0 of the meteoric body decrease. 
For such relatively small values of M0 (M0 d 100 g) 
the coagulation in the trail practically terminates 
before any noticeable spreading of the trail can take 
place as a result of turbulent diffusion (after a time of 
the order of 1 sec). Only very small dust particles with 
radii krn  1 m have time to form in the trail during 
this time. However, coagulation processes in the trails 
of slow dense meteoric bodies with large masses 
(M0 > 1 kg) go on efficiently even at the stage of 
diffuse spreading of the trail. Particles of radii  
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kr   0.1 m, which scatter the light most efficiently, 
can be generated in such trails but those particles occur 
very rarely among the primordial particles of space 
dust, i.e., micrometeorites.2 

The dust trails of bolids with R0s > H can be 
observed from the Earth’s surface at dusk when their 
visible surface brightness can be more them twice the 
background brightness of the sky in the spectral range 
0.3–1 m and also in daytime from a satellite in the 
spectral region 0.24–0.26 m. If v0 = 11 km/s and 
cos z = 0.6, such trails are generated by ferrous me-
teoric bodies with masses M0 > 10 g, dense stone 
meteoric bodies with masses M0 > 30 g, and carbo-
naceous chondrites CI with M0 > 100 g. 

The dust trails of slow dense meteoric bodies with 
masses M0 > 10 kg can be observed for tens of 
minutes, the diameter of trail during this time in-
creases up to hundreds of meters. Generally, such trails 
are several tens of kilometers in length, but for almost 
tangential penetration of the very large meteoric 
bodies into the Earth’s atmosphere the lengths of their 
dust trails can reach hundreds of kilometers. 

The frequencies of formation of the observed dust 
trails of bolids are quite high because about 100 me- 

teoric bodies with masses M0 > 1 kg penetrate into 
the Earth’s atmosphere every twenty-four hours. 
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