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Stationary thermal self-action of a coherent beam oh a vertical path in the atmosphere 
is investigated by the method of numerical modeling. The choice of beam intensity profile, 
the effect of the altitude profile of the wind direction, and the effectiveness of segmented 
and flexible correctors are investigated. 

 
 

The effectiveness of phase correction of 
high-power radiation propagating on a vertical path in 
the atmosphere, for which phase distortions are 
characteristically concentrated near the radiating 
aperture, have been investigated previously1–8 both 
theoretically1,4–8 and by means of physical modeling.2,3 
The possibilities of modal1,3,6,8 and segmented cor-
rectors2,6 have been studied. This paper is a con-
tinuation of preceding papers,5–7 but unlike them in 
this paper factors such as the intensity profile of the 
initial beam, the dependence of the wind direction on 
height above the earth’s surface, the number of degrees 
of freedom of modal and zonal correctors, as well as 
some variants of the simultaneous effect of these 
factors are investigated more systematically. 

Consider a transmitting aperture with area S, 
emitting a coherent optical beam with wavelength  in 
the vertical direction. It is well known that because 
the medium absorbs the radiation the gas in the beam 
channel is heated. The heating in the steady-state 
regime is described by the equation 
 

 (1) 
 

Here .x and ó are coordinates in the transverse 
section of the beam; T is the temperature of the me-
dium;  is the absorption coefficient of the atmosphere 
at the wavelength ;  is the density and Cp is the heat 
capacity of air; 2 2

x yV V V    is the component of the 

wind velocity that is perpendicular to the direction of 
propagation of the radiation; and, cos = Vx/V and 
sin = Vy/V. In this case "wind" includes both the 
atmospheric wind itself and a correction to it, asso-
ciated with the slewing while tracking a moving 
target. All these parameters and the intensity distri-
bution in the cross section of the beam are, in this case, 
functions of the longitudinal coordinate h (altitude). 
The heating of the medium changes the index of re-
fraction of the medium n by the amount n = nTT. A 
section of the path of length h introduces into the 
phase of the complex amplitude of the optical field 
E(x, y) a distortion equal to  = nTT(x, ó)h. 

The propagation of radiation is described by the 
parabolic equation of quasioptics 
 

 (2) 
 

where  is the transverse Laplacian. 
In solving Eqs. (1)–(2) numerically we assumed 

that because the phase distortions decrease rapidly 
with altitude they are concentrated directly in the 
plane of the radiating aperture. Then the solution of 
the problem of propagation of radiation reduces to 
calculating the phase distortions of the field E(x, y) 
and then solving the problem of free diffraction 
(n = 0). The total distortion introduced into the 
phase by the atmosphere is determined in this ap-
proximation by the formula 
 

 (3) 
 
Let D() = cos/x + sin/ó and D–1 be the 
operator that is the inverse of D. We shall assume that 
(h) = const. Then we obtain 
 

 (4) 
 
In solving the problem of self-action it is convenient to 
introduce the normalized coordinates x = x/a0 and 
y = ó/à0. Then D–1 = a0D

–1. Here a0 is the size of 
the beam. The next step is to introduce the charac-
teristic intensity 
 

 (5) 
 
after which the characteristic power is determined 
automatically: 2

0 0 0.P I a   Now (x, y) = D–1()   

 (I(õ, y)/I0). 
Equation (1) was solved by the marching cal-

culation method, and Eq. (2) was solved by the 
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Fourier transform method. The length of the path H 
was assumed to be equal to 1/3 of the diffraction 
length 2

0,dL ka  k = 2/. Here and below, for 
convenience, we shall write all relations in unnor-
malized coordinates. In so doing, one should re-
member that the values of a0 or H can be chosen 
arbitrarily, provided that the relation 2

01/ 3H     
is satisfied. The transmitting aperture was assumed 
to be either a circle of radius r0 = 2a0 or a square 
with side l0 = r01/2. The intensity profile in the 
plane of the transmitting aperture was assumed to be 
one of the following variants of distributions: 
 

 for the Gaussian,  (6) 
 

 for the hyper-Gaussian 
profile, (7) 
 

 for the super Gaus-
sian profile. (8) 
 
The quantity a was, as a rule, set equal to a0 for a 
Gaussian profile, R0 for a super Gaussian profile, and 
l0 for a hyper-Gaussian profile. The transmitting 
aperture was described by the aperture functions 
 

 (9) 
 

 (10) 
 

For m > 8 the super-Gaussian and hy-
per-Gaussian intensity profiles fill the apertures Ms 
and Mh, respectively, practically uniformly, and in 
addition outside the transmitting aperture the in-
tensity is virtually equal to zero. The isolines of the 
hyper-Gaussian profile are nearly square. We study 
below two variants of the hyper-Gaussian profile: 
the variant defined by the formula (7) and the 
variant turned by 45 degrees relative to the first 
variant ("with the diagonal” along the X axis) 
together with the transmitting aperture. 

The numerical solution of the problem of 
self-action gives the distribution of the normalized 
intensity of the focused beam in the plane h = H. 
The normalized power Pm/Ð0 of the radiation in-
cident in a circle of radius r = L/ka0, equal to the 
diffraction radius of a focused untruncated Gaussian 
beam at e–1 of maximum intensity on the axis in the 
focal plane h = H, is calculated from the intensity 
distribution. The computational results are given in 
the form of curves of the power on target versus the 
power on the transmitting aperture; these curves are 
called power optimization curves. 
 

OPTIMIZATION OF THE INTENSITY PROFILE 
 

Before studying the effectiveness of phase cor-
rection we shall study the question of the choice of the 
best intensity profile in the absence of correction. We 
shall optimize the starting profile in the class of 
Gaussian, super-Gaussian, and hyper-Gaussian beams. 
When comparing the results, correctness is obtained 
when the areas of the transmitting apertures Ms and 
Mh are equal. We shall confine our attention to the 
case of constant wind direction (h) = 0 (the wind 
blows along the X axis). 

Figure 1 shows power optimization curves for the 
following profiles of the beam intensity: 
1) unbounded Gaussian a = a0; 2) Gaussian a = a0 
(here and below the beam is limited by the corre-
sponding aperture functions (9) and (10)); 3) "double 
width" Gaussian a = 2a0 = r0; 4) super-Gaussian 
m = 8, a = r0; 5) hyper-Gaussian m = 8, a = l0; 
and, 6) hyper-Gaussian, turned by 45 degrees. One 
can see from the figure that from the standpoint of 
obtaining the highest power on target more complete 
coverage of the transmitting aperture is more advan-
tageous (super—Gaussian and hyper-Gaussian pro-
files, as well as the "double width" Gaussian beam). 
 

 
 

FIG. 1 
 

CHANGE IN WIND DIRECTION  
WITH INCREASING ALTITUDE 

 
It was assumed above that the wind direction 

does not depend on the height above the ground 
(h) = const. In the real atmosphere, however, the 
wind direction changes gradually from the direction 
near the ground to the direction in the free at-
mosphere. The direction of heat flow out of the beam 
channel could also be affected by the slewing of the 
beam while tracking a moving target, if the direction 
of slewing is not the same as the direction of the 
atmospheric wind. 

In the general case, the atmospheric path is 
described by two profiles — the profile of wind 
direction (h) and the profile of the normalized 
nonlinearity parameter: 
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 (11) 
 

We introduce the concept of effective refraction 
length of the path, defined as 
 

 (12) 
 
Then the total distortion of the phase on the path is 
given by 
 

 (13) 
 
Because in calculating the self-action the phase dis-
tortions are assumed to be concentrated in the plane of 
the transmitting aperture, it is convenient to eliminate 
the dependence on the coordinate h by introducing a 
function h() that is the inverse of (h) and R() = 
R(h()). Then the formula (13) will assume the form 
 

 (14) 
 

Now, to calculate the phase distortions the 
function ( ) ( ) ( ) / ,Rf R h H     which characterizes 

the "angular"' distribution of the distortions, is pre-
scribed instead of the profiles R(h) and (h). The 
specific form of f() can be very different for different 
locations and meteorological conditions. It depends on 
the direction and velocity of slewing. Here we con-
fined our attention to a uniform distribution 
 

 (15) 
 
The constant is determined from the condition 

( ) 1,f d    which follows from the definition (11). 

Further, we shall characterize the distribution f() by 
the "standard deviation" 
 

 (16) 
 
which is applicable to distributions other than the 
uniform distribution (15). 

The computational results are presented in 
Fig. 2. The graphs are enumerated as follows: hy-
per-Gaussian beam (a = r0, m = 8): 1) V = 0.5, 
2) V = 1.0, and 3) V = 1.5; Gaussian beam 
(a = a0):4) V = 0.5, 5) V = 1.0 and 6) V = 1.5. 

One can see that as the standard deviation V  
increases the power on target increases substantially 
(by a factor of 2–3), while the advantage of  
having a filled aperture (hyper-Gaussian beam) is 
preserved. 
 

 
 

FIG. 2 
 

EFFECTIVENESS OF PHASE CORRECTION 
 

We shall study the effectiveness of two types of 
phase correctors: a segmented with a hexagonal 
configuration of the segments and a "flexible" cor-
rector, which compensates the first few classical 
aberrations. The wind direction is assumed to be 
constant (h) = 0. 

Two variants of a segmented corrector were 
studied: 1) compensation of the average phase within 
each segment and 2) compensation of the average 
phase and tilt within each segment. The number of 
compensator transmitting aperture was set equal to 
7.19 and 37. 

Modeling of the flexible corrector consisted of 
calculating the best approximation of the phase 
distortions within the transmitting aperture with 
Zernike polynomials by the method of least squares, 
followed by subtraction of these aberrations from the 
phase of the radiation. The aberration polynomials 
are enumerated as follows: tilt (1, 2), defocusing (3), 
astigmatism (4, 5), coma (6, 7), and spherical ab-
erration (8). 

Figure 3 shows the power optimization curves 
for a Gaussian beam with an effective size a = a0 on 
the aperture Ms with correction of phase distortions 
using a segmented corrector with the following 
parameters (the number in parentheses is the number 
of degrees of freedom of the corrector): 

1–7 segments, correction of the average phase 
and tilt (21), 

2–19, segments, correction of the average phase 
(19), 

3–19 segments,correction of the average phase 
and tilt (57), 

4–37 segments,correction of the average phase 
(37). 
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FIG. 3 
 

The total number of degrees of freedom of the 
corrector, presented in parentheses, is equal to the 
product of the number of degrees of freedom of one 
segment by the number of segments. The use of a 
segmented corrector makes it possible to increase the 
maximum power on target by a factor of 3 or 4, while 
for a corrector with 19 elements and three degrees of 
freedom for each segment the maximum power on 
target increases by more than an order of magnitude. 
Thus if the effectiveness of the 37-element corrector 
were not unexpectedly low, one could say the ef-
fectiveness of the corrector depends directly on the 
total number of degrees of freedom. 
 

 
 

FIG. 4 
 

Figure 4 shows power optimization curves of 
the same beam with the use of a modal corrector: 
1) without correction; 2) tilt correction; 3) tilt and 
defocusing correction; 4) tilt, defocusing, and 
astigmatism corrections; 5) corrections of the first 
seven aberrations; and, 6) correction of eight ab-
errations. 

The computational results are presented for the 
case (h) = const. One can see that the effectiveness 
of correction increases monotonically as the number 
of corrected aberrations increases. When all eight 
classical aberrations (from tilt to spherical aberra-

tion) are corrected, the maximum power on target is 
tripled. 

Next, the effect, of the change in wind direction 
on the path as the height above the ground increases 
on the effectiveness of correction of the lowest order 
modes was investigated for beams with different 
intensity profiles. Table I gives the maximum values 
of the power in the receiving aperture, which were 
obtained by optimizing the power of the source. The 
first figure is the maximum power without correc-
tion, the second figure is the maximum power with 
tilt correction, and the third figure is the maximum 
power with defocusing correction. The index m = 8 
for super-Gaussian and hyper-Gaussian profiles. The 
size a is equal to a0, 2a0, and l0 for the Gaussian, 
super-Gaussian, and hyper-Gaussian profiles, re-
spectively. 
 
TABLE I. 
 

 
 

It follows from Table I that in the absence of 
phase correction the super-Gaussian and both 
variants of the hyper-Gaussian intensity profiles are 
approximately equivalent and give a 2 to 2.5 times 
higher intensity than Gaussian filling of the aper-
ture. The hyper-Gaussian profile is sharply distin-
guished in the case of tilt correction, but only if the 
wind direction is constant on the entire path, which 
is most likely to happen on a horizontal path under 
conditions of beam slewing than in the case of ver-
tical propagation. Defocusing correction make it 
possible to achieve higher effectiveness for a su-
per-Gaussian intensity profile when the amplitude of 
variation of wind direction is large. At the same 
time, in the case of a hyper-Gaussian profile defo-
cusing correction unexpectedly resulted in a worse 
result. This last fact can be explained as follows. 
First, the least-squares method used to calculate the 
aberration coefficients is optimal only from the 
standpoint that it gives the smallest rms residual 
distortion of phase on the transmitting aperture, but 
it does not give the maximum possible power on 
target, especially if the number of corrected aber-
rations is small. Second, this deficiency could be 
connected with the square shape of the transmitting 
aperture of the hyper-Gaussian beam. Such an ap-
erture is poorly matched with the corresponding 
aberration polynomial, which is proportional to 
2 = x2 + ó2 and which has "circular" symmetry. 

On the whole the results presented in Table I 
indicate that variation of wind direction with alti-
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tude changes radically the ratio of the contributions 
of the lowest order aberrations and thereby strongly 
affects the effectiveness of the modal corrector. As 
the amplitude of the change in wind direction in-
creases, the contribution of aberrations which do not 
exhibit "circular" symmetry (i.e., they are not in-
variant under a rotation of the coordinate system] 
decreases and conversely the contribution of aber-
rations which do have circular symmetry (defocusing 
and spherical aberration) increases. 

It should be noted that the approximation, in-
troduced above, of a phase screen placed in the plane 
of the transmitting aperture obviously overestimates 
the ' effectiveness of correction. However this factor 
is determining only if the number of degrees of 
freedom of the corrector is large. In the case when the 
number of degrees of freedom is small, the maximum 
effectiveness of correction is determined by the 
accuracy with which the corrector reproduces pre-
scribed predistortions of the phase. 
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