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The accuracy of an approximate methods used to calculate the mean 
value, variance, and correlation function of the flux of solar radiation in 
cumulus clouds is estimated by comparing its results with the Monte Carlo 
calculations. The approximate method is based on solving the stochastic 
transfer equation in a small—angle approximation and sibsequent averaging of 
the obtained solution over the ensemble of realizations of the cloud field. 

 
Recently, the great attention is paid to the problem of 

interaction of the radiation with mesoscale cumulus clouds. 
The most advanced theoretical approach to this problem is 
based on an approximation of the optical models of cumulus 
clouds by random indicator fields, which are constructed 
with the help of the Poisson point processes. By means of 
averaging the stochastic radiation transfer equation over the 
ensemble of realizations of a Poisson cloud field, the closed 
systems of equations have been obtained for the first and 
second moment of the radiation intensity and algorithms of 
statistical simulation for calculating the linear functionals 
of these moments of intensity have been constructed.1,2 The 
use of the Monte Carlo method makes it possible to 
investigate closely the statistical characteristics of the 
radiation with realistic parameters of the cloud field and to 
take into account correctly the effects of the multiple 
scattering. For this reason we may consider the calculations 
performed according to the algorithms of the Monte Carlo 
method to be reference and employ them for estimating the 
accuracy and the limits of applicability of the approximate 
methods of the statistical description of the radiation 
transfer in the cumulus clouds. 

The purpose of this paper is to estimate the accuracy of 
one of these approximate methods based on solving the 
stochastic transfer equation in a small–angle approximation 
and on subsequent averaging of the solution that has been 
obtained over the ensemble of realizations of the cloud 
field.3,4 

Let a cloud field occupies the layer 0 ≤ z ≤ H. The 
coefficients of extinction σ(r) and scattering σsc(r), and 
the scattering phase function g(r; μ) at an angle μ are the 
random scalar fields, namely, σ(r) = σi(r), σs(r) = σsi(r) 
and g(r; μ) = g(μ)i(r), where i(r) is the random 
indicator function which is equal to unity when the point 
r belongs to the cloud and to zero in the opposite case. 
The field i(r) is simulated using the Poisson point 
processes on the straight lines.1 This field is statistically 

homogeneous and anisotropic, with the mean value 

<i(r)> = N and the exponential correlation function 

Ki(r1,r2) = exp{– A(ω)| r1 – r2 |}, where N is the cloud 

amount, A(ω) = (| a |) + | b |) A, ω = (a, b, c)= (r1–r2)/| r1–r2 ⎪, 
A = (1.65 ⋅ N – 0.5)2 + 1.04]/D, and D is the 
characteristic (average) horizontal cloud size. Here and 

below the angular brackets denote the ensemble average 
over the realizations of the cloud field. 

Let us assume that a unitary flux of the solar radiation 
ñ
☼
 = –arc cos ξ

☼
, where ξ

☼
 is the solar zenith angle, is 

incident at the top of the cloud layer in the direction 
ω
☼
 = (a

☼
, b

☼
, ñ

☼
). It follows from the stochastic radiation 

transfer equation that the random flux S(r) of unscattered 
light is equal to 
 

S(r) = exp(–τ (r; σ)), (1) 
 

where 
 

τ (r; σ) = 
σ
ñ
☼

 ⌡⌠
z

H

i(r)dξ,  r′ = r + 
(ξ – z)

⎪ñ
☼

⎪  ω
☼
. 

 

In the small–angle approximation for the flux of the total 
transmitted radiation Q(r), the following formula have been 
obtained in Ref. (3) 
 

Q(r) = exp (τ (r, σ
∗
)). (2) 

 

where 
 

τ (r, σ
∗
) = 

σ
∗

ñ
☼

 ⌡⌠
z

H

i(r)dξ,  σ
∗
 = σa + G0σSC 

 

is the effective extinction coefficient, σa is the true 

absorption coefficient, and G0 = ⌡⌠
–1

0

g(μ) dμ. According to 

Eqs. (1) and (2), the flux of the diffuse transmitted 
radiation Qd(r) is determined by the expression 
 

Qd = exp (–τ (r, σ
∗
)) – exp (–τ (r, σ)). (3) 

 

From Eqs. (l)–(3) for the mean flux and its variance we 
obtain 
 

<S(r)> = < exp (–τ (r, σ)) >, 
 

and 
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Ds(r) = < exp (–2τ (r, σ)) > – < S(r) >2, 
 

Q(r) = < exp (–τ (r; σ
∗
)) > 

 

DQ(r) = < exp (–2τ (r; σ)) > – < Q(r) >2, 
 

< Qd(r) > = < exp (–τ (r; σ
∗
)) > – < exp (–τ (r; σ)) >, 

 

and 
 

DQ
d
(r) = DQ(r) + DS(r) –  

 

– 2 (< exp (–τ (r; σ
∗
)) – exp (–τ (r; σ)) > – 

 

– < exp (–τ (r; σ
∗
)) > < exp (–τ (r; σ)) >). (4) 

 

Since the cloud field is statistically homogeneous and the 
boundary conditions are uniform, the moments of the fluxes 
depend only on z. The calculation of the mean flux and of 
the variance of the fluxes Is connected with determination 
of the function < j(z) > = < exp {–τ(r; Σ)} >, where Σ 
assumes the values σ, 2σ, σ*, 2σ*, and σ + σ* depending on 
the considered characteristic. In the framework of the 
considered mathematical model of the cumulus cloud field, 
this function is calculated according to the formula1 
 

< j(z) > = 

2
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 (5) 

 

It is not difficult to show that the spatial correlation 
functions of the fluxes are expressed in terms of 
< j(r1; Σ) j(r2; Σ) >. In the case in which r1 and r2 lie in one 
plane a closed system equations for the correlation 
< j(r1; Σ) j(r2; Σ) > has been obtained from the stochastic 
radiation transfer equation and solved.5 Note that the 
statistical characteristics of the fluxes are invariant under 
two parameters, namely, the optical depth τ = Σ H and the 
ratio γ = H/D. 

Let us compare the mathematical expectations, 
variances, and correlation functions of the fluxes calculated 
by the first method based on solving the equations for the 
moments of the intensity by the Monte Carlo method and 
by the second method based on averaging (over the 
ensemble of realizations of the cloud field) the solution of 
the stochastic transfer equation in the small–angle 
approximation.3,4 The statistical characteristics of the 
unscattered radiation coincide.  

When providing a physical foundation for the second 
method, it is assumed that in order to employ it, it is 
sufficient to satisfy the following condition: the width of 
Green's function L of the stochastic transfer equation is 
much less than the horizontal cloud size D. Consequently, 
with increase of γ (H is fixed and D decreases), the absolute 

deviation Δ = ⎪ < Q
(1)

d
  > – < Q

(2)

d
  > ⎪ is to increase, which is 

confirmed by the results of calculations shown in Fig. 1. 
Here the superscript i = 1, 2 denotes the mean flux 
calculated by the corresponding method. It can be seen that 

the relative error δ = Δ × 100% / < Q
(1)

d
  > strongly depends 

on the geometric–optics parameters of the field of cumulus  

clouds and on the conditions of illumination and can 
amount to 50–70% (curves 2 for γ = 0). When the optical 
depths are small, the second method overestimates the mean 
flux of the diffuse radiation and conversely underestimates 
it at large τ. 
 

 
 

FIG. 1. The mean flux of scattered transmitted radiation as 
a function of γ at H = 0.5 km for N = 0.5. ξ

☼
 = 60°: τ = 5 

(1) and 30 (2). ξ
☼
 = 0° τ = 30 (3). Here and in Figs. 2, 3, 

and 4 the solid curves illustrate the first method while the 
dashed curves illustrate the second method. 
 

Factors random in nature associated with the 
occurrence of a large number of clouds with finite 
horizontal sizes in a cloud field influence on the formation 
of the radiative regime and the brightness fields of cumulus 
clouds, namely, a possibility for the radiation to enter into 
and to exit from the clouds through their side surfaces, 
screening of the incident solar radiation by the surrounding 
clouds, mutual shadowing, and multiple scattering of light 
in the gaps between the clouds (radiative interaction of the 
clouds). These effects account for variability of < Qd > 
attendant to changes in γ and with all the other parameters 
of the problem unchanged. If the Sun is close to the zenith, 
the second method makes it impossible to take this 
variability into consideration (Fig. 1, curve 3). 

The analysis of our results shows that the second method 
has a sufficiently high accuracy for small cloud amounts, 
namely, when the value of Δ does not exceed 0.02–0.03 in the 
interval 0 ≤ γ ≤ 2 (Fig. 2). For moderate and especially for 
large cloud amounts when the screening, mutual shadowing, 
and radiative interaction of the clouds are important for the 

formation of the radiative fluxes, < Q
(2)

d
  > can be substantially 

different from < Q
(1)

d
  >, and the value of Δ amounts to  

0.10–0.15. This circumstance makes it possible to conclude 
that a possibility to neglect the interaction of the radiative 
fields of the individual clouds is additional and most 
important condition of the applicability of the second method. 
This interaction is negligible when the cloud amounts are 
small and also in the case of optically thin clouds, for 
example, cirrus clouds. 

In order to calculate the mean radiative fluxes in 
both cumulus clouds (γ ∼ 1) and stratus clouds (γ n 1),  
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which partially cover the sky, the following formulas are 
widely used: 

 

< S> = 1 – N, < Qd > = NQd,0, and < R > = NR0,  (6) 
 

where Qd,0 and R0 are the diffuse transmission and the 
albedo of a continuous homogeneous cloud layer. It Is 
shown7 that in the limiting case γ → 0 formulas (6) can be 
obtained from the equations for the mean intensity and they 
describe the mean radiative fluxes in stratus clouds fairly 
well. The results given in Figs. 1 and 2 testify to the fact 
that in the case in which the cloud amounts are small and 
moderate, an employment of asymptotic formulas (6) in 
order to estimate the mean fluxes in cumulus clouds results 
in greater errors than that for the second method. 
 

 
 

FIG. 2. The mean flux of scattered radiation versus γ at 
H = 0.5 km and τ = 30 for ξ

☼
 = 60° and N = 0.1 (1), 

0.5 (2), and 0.9 (3). 
 

 
 

FIG. 3. The variances of the fluxes of transmitted 
radiation at H = 0.5 km and τ = 15 for ξ

☼
 = 30°, and 

N = 0.5: the scattered radiation (1) and the total 
radiation (2). 
 

The dependence of the variances of the fluxes of the 
total radiation DQ and the scattered transmitted radiation 
DQ on γ is illustrated in Fig. 3. It can be seen that with 
decrease of γ (D increases), the accuracy of the second 
approximate method grows. In the interval 0.5 ≤ γ ≤ 2 

typical of the cumulus clouds, DQ

(2)

d
  exceeds DQ

(1)

d
  by 

approximately an order of magnitude, while DQ

(2)

d
  is less 

than D
(1)

Q
  by a factor of 2–3. It is pertinent to note that 

D
(2)

Q
  and DQ

(2)

d
  almost coincide, which contradicts the 

available experimental data presented in Ref. 8, namely, the 
variance of the flux of the total radiation exceeds the 
variance of the flux of unscattered transmitted radiation by 
a factor of ∼ 2. 

The correlation function KQ(L) of the flux of the total 
radiation as a function of γ is plotted in Fig. 4, where 
L = ⎪r1 – r2 ⎪, r1 = (x1, 0, 0) and i = 1, 2. It is well 
known8 that KQ(L) is determined to a considerable extent 
by the correlation of the flux of unscattered light, which is 
calculated from the same analytical formulas in both cases. 
This fact explains a satisfactory agreement (especially when 

the values of γ are small) between K
(1)

Q
 (L) and K

(2)

Q
 (L). 

 

 
 

FIG. 4. The correlation functions of the fluxes of the total 
transmitted radiation at H = 0.5 km and τ = 15 for 
ξ
☼
 = 30°, N = 0.5, and γ = 2 (1) and 0.5 (2). 

 

The analysis performed shows that simple analytical 
expressions used to calculate the mean fluxes of the short-
wave radiation in Refs. 3 and 4 provide a satisfactory accuracy 
except for the case of large cloud amounts and small solar 
zenith angles for optically thick clouds. Based on these 
expressions, it is also possible to calculate the correlation 
functions with a sufficiently high accuracy, but these 
expressions yield great errors in calculating the variances of 
the fluxes of transmitted radiation for optically thick clouds 
with the parameter γ ≥ 1. 
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