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The process of the second–harmonic generation inside an annular cavity 
with external pumping at fundamental frequency is considered. It is shown 
that such a system can be bistable and multistable. To implement these 
regimes, it is necessary that the normalized depth of the nonlinear medium 
(the ratio of the depth of the medium to the conversion distance) should be 

large enough (� 4). 
 

The second–harmonic generation (SHG) inside a 
cavity with external pumping into a nonlinear crystal is of 
interest from two viewpoints. On the one hand, along with 
an increase of the lasing efficiency, the second harmonic 
(SH) output intensity may be controlled. On the other 
hand, a passive cavity containing a nonlinear medium is a 
nonlinear system with the feedback and a special mechanism 
of coupling of the pump wave and the SH. Therefore, new 
stationary and nonstationary lasing regimes may be expected 
in such a system. The former are Instability1 and 
multistability, while the latter is self–pulsing.2,3  

The SHG process inside a passive cavity with a 
double" feedback has been considered in Refs. 1–3 for the 
laser radiation fields at the frequencies ω and 2ω. In these 
studies the approximation of a point medium was used, i.e., 
the effects of wave propagation were neglected. In the 
present study we consider the case of a single feedback only 
for the SH simultaneously taking into account the 
variations of the SH amplitude as a result of interaction, 
including the back reaction on the pump wave. As a result 
we found new previously unknown regimes. 

When solving the problem of the SHG inside a cavity, 
it is necessary to know how the SH behaves in the case of 
generation in a semi–infinite medium with arbitrary 
complex amplitudes at the boundary of the medium. In 
Section 1 we analyze the main features of this process as a 
function of the initial conditions. Section 2 presents the 
results of analytical and numerical studies of the SHG 
inside a passive cavity. Conditions are found for the origin 
of several stationary states and their stability is 
investigated. 

 
1. GENERAL FEATURES OF THE SHG WITHOUT A 

CAVITY 
 
When studying the SHG process inside a cavity with 

the feedback one needs the results of the solution of the 
problem on the stationary SHG in a semi-infinite medium 
with arbitrary initial conditions at the boundary of the 
medium. This solution is given in Ref. 4 for the case of the 
exact phase synchronization Δκ = 2κ1 – κ2 = 0. For 
arbitrary values of Δκ the variations of the SH amplitude 
a2(z) and the phase change of the waves at the frequencies 
ω, 2ω – ϕ1(z), and ϕ2(z) with distance have the form5 

 

, (1) 

, 

 (2) 

,  (3) 

 

where the distance z is counted off from the boundary of 
the nonlinear medium, z0 is determined from the boundary 
condition, σ is the nonlinear coupling constant, Δ = Δκ/2σE 
is the reduced detuning, and the elliptic sine function 
parameter m = (e1 – e3)/(e1 – e3 ) is expressed in terms of 
the roots of the cubic equation(A1) (see Appendix A) 
e1 > e2 > e3 . The integrals in Eqs. (2) and (3) may be 
expressed in terms of elliptic functions (see Eqs. (B1) and 
(B2), Appendix B). The values E and Ñ entering into 
Eqs. (1)–(3), remain unchanged during the wave 
propagation through the medium4,6 

 

, (4) 

 

 
 

, (5) 

 

where Ψ = 2ϕ1 – ϕ2 is the phase difference. The solution (1) 
describes periodic conversion of the SH energy into the 
radiation at the fundamental frequency, and the inverse 
process, except for two cases. When the waves amplitudes  
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and the phase differences at the medium boundary are such 
that a2(0) cosΨ(0) = ΔE(Ñ = Δ), the energy of the system is 
completely converted into the second harmonic in the limit 
z →∞. Another example of nonperiodic behavior is the phase 
centers,6 in which the wave amplitudes are independent of 
the distance. As follows from Eq. (5), the phase difference 
is also a periodic function of z. Note that the spatial period 
 

,  (6) 
 

where K(m) is the elliptic integral of the first kind, as well 
as the maximum and minimum values of the SH amplitude 
 

,
 

 

 (7) 
 

depend on wave amplitudes and phase differences at the 
boundary in addition to nonlinearity and detuning and are 
single-valued functions of the values E and C. When 
looking for a qualitative description of the process, it is 
more convenient to use a phase picture,6 in which the value 
Ñ determines the trajectory (E = const). The minimum 

value Tmin = π/ e1 – e3 σΕ  is reached in the phase centers, 
where m = 0 and ⎥ C ⎥ = ⎥ Cmax⎥ . The period T increases as 
Ñ – Δ, i.e., when the trajectory approaches the separatrix 
(Ñ – Δ, m = 1) where it becomes infinity. The degree of 
modulation (amax – amin) is maximum for Ñ = 0, and 
vanishes with increase of ⎥ C ⎥ to ⎥ C ⎥ = ⎥ Cmax⎥ at the 
phase centers. 

In the case when Δκ = 0, it follows from Eqs. (2) and 
(4) that ϕ1(z) and ϕ2(z) monotonically increase or decrease 
depending on the sign of C. If Ψ = –π/2 (C = 0), the SH 

amplitude a2(z) decreases vanishing at ~z = z /σE. At this 
point the SH has phase discontinuity and changes by π (see 
Appendix C), and the solution transfers to the branch 
corresponding to Ψ = π/2. If Δκ ≠ 0, wave phases 
monotonically depend on z, provided the initial conditions 

are such that CΦ2 ≤ C < 0, Δ < C ≤ CΦ1 where CΦ1 and 

CΦ2 denote the values of Ñ at phase centers. 
 

2. SH GENERATION INSIDE A CAVITY WITH 

EXTERNAL PUMPING 
 

We enclose a nonlinear medium of the depth/ in an 
annular cavity. An external laser, lasing at a frequency ω is 
used for pumping. Let the cavity mirrors be transparent for 
the pump wave, so the resonant conditions take place for the 
SH: 
 

,
 (8) 

,
 

where Δt = (lc – l)/ñ, lc is the cavity length, α is the 
extinction coefficient of radiation per one transmission 
through the cavity, and δ is the cavity detuning. In a 
stationary case the amplitude and phase of the SH aS(z) and 
ϕS(z) are time independent and satisfy the system of equations 
 

, (9) 
 

 
 (10)

Then the amplitude and phase upon exiting the nonlinear 
medium aS(I) and ϕS(I) are obviously described by the 
solution of the stationary problem on the SHG without a 
cavity (1) and (3) with boundary conditions aS(0) and 
ϕS(0). The values a1(0) and ϕS(0) are constant and are 
determined by the emission from the external lasing. Since 
the SHG depends only on the phase difference at the 
boundary, one may assume without loss of generality that 
ϕ1(0) = 0 and Ψ(0, t) = – ϕ2(0, t). 

When detuning from the exact phase synchronization 
is Δκ = 0, and phase velocities of the waves in the medium 
are matched, the temporal evolution of the system may be 
studied using Poincare's mapping technique. If an(0) and 
ϕn(0) are the corresponding values for the nth passage of 
radiation through the cavity at the inlet of the nonlinear 
medium, then an(I) and ϕn(I) are determined at the outlet 
from the medium from solutions (1) and (3) of the 
stationary problem with no cavity while conditions (8) yield 
the amplitude and phase for the (n + 1)th passage. The 
mapping thus constructed allows one to find the SH 
amplitude and phase, in the time intervals being multiple of 
the time of radiation passage through the cavity. The 
stationary states (9) and (10) represent the fixed points of 
the mapping. Note that in the vicinity of a fixed point, 
where the SH complex amplitude varies insignificantly 
during the time of radiation passage though the cavity, the 
solutions of the stationary problem (1) and (3) may be used 
for approximate description of radiation propagation 
through the medium provided Δκ/κ2 n 1. 

To investigate the stability of the fixed point, we find 
a mapping relating small deviations from this point 

 

 
 

for the nth and (n + 1)th passages. Appendix Ñ gives the 
coefficients of the matrix T: 
 

. (11) 

 

We perform a transformation to the variables 
x = a2 cosϕ2 and ó = a2 sinϕ2 in Eq. (11). The fixed point 

remains stable if the eigenvalues of the matrix ~T  satisfy the 
condition ⎥ λ1,2⎥ 2 < 1 for new variables λ1 and λ2. 

 
a) The case of the exact resonance and 

synchronization (σ = 0 and Δκ = 0). 
For the existence of the solution of Eq. (10) 

corresponding to n = 0 the nonlinear phase change of the 
SH ϕ = ϕ2(I) – ϕ2(0) should be equal to zero when the 
radiation has passed once through the cavity. It is possible 
only in the case when Ψ(0) = π/2 and Ñ = 0. The 
stationary value of amplitude at the inlet of the nonlinear 
medium is given by the expression 

 

. (12) 

 

This solution holds for arbitrary normalized depth of the 
nonlinear medium 1/L (L = 1/σa1(0) is the conversion 
distance) and for arbitrary Q–factors of the cavity. 

From Eqs. (C1)–(C4) we may obtain the condition of 
stability in the form 

 

 
 (13) 
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for Ñ = 0 and l . L. A numerical analysis shows that 
Eq. (13) is satisfied for arbitrary Q–factor of the cavity, if 
l < lcrit = 3.6 L. For the depths exceeding the critical and 
for "moderate" values of a there appears an instability zone, 
which increases with increase of the normalized depth. To 
analyze the reasons of the appearance of such an instability, 
we consider the corresponding phase picture. The stationary 
amplitude satisfies the condition a2(0)/E ≈ α for the depths 
under consideration. 

Let the stationary values of the SH amplitude and 
phase acquire identical increments δa0 and δϕ0 for various α. 
It is easy to see that the points in the phase plane 
corresponding to the perturbed values lie on the trajectories 
extremely spaced from the separatrlx (α ≈ 1 – α). For these 
α the phase change in the SH for one passage will be 
largest. In the range of small Ñ the value Δϕ is linearly 
dependent on Ñ (Eq. B4). Therefore, if the depth of the 
nonlinear medium is such that ⎥ Δϕ⎥ > 2⎥ δϕ0⎥ then the 
inequality will be satisfied for arbitrary δϕ, and the 
stationary state will become nonstationary. Apparently, the 
type of this instability is the "saddle", i.e., when only the 
amplitude is perturbed, the system returns to its stationary 
point. 

The solution of system of equations (9) and (10) holds 
for n = ± 1 within a certain range of the Q–factors of the 
cavity if the nonlinear phase change of SH for one passage 
is ± 2π. The value of ⎥ Δϕ⎥ increases with increase of 
⎥ C⎥ during the period T (T is defined by expression (6)) 
and is at its maximum at the phase centers, where 

⎥ C⎥ = ⎥ Cmax⎥ = 
1

3
 

3
 . Since T is at its minimum at the 

phase centers, the nonlinear phase changes in the media of 

depths l ≥ TΦ = 
 2

3 πL would be at its maximum for those 

initial conditions, which correspond to phase centers 

a2(0) = a
Φ

2
  = E/

 
3  and ϕ(0) = 0, π. Therefore, the 

minimal depth may be found from the condition 
 

 Δϕ⎥ = 
 
2  

Imin

L   = 2π.  (14) 

 
Apparently, if l = lmin, Eq. (9) is satisfied only for α = 1. 
With increase of the depth of the nonlinear medium 
Eqs. (9) and (10) have solutions only within a certain range 
of the Q–factors of the cavity. Figure 1a shows the results 
of the numerical solutions of Eqs. (9) and (10) for various 
values of the extinction coefficient for one passage. The 
zones of stable stationary states are shown by solid curves, 
and the instabilities — by dashed curves. In case n = ± 1, 

the matrix 
∼
T  was numerically retrieved. It was found that 

the fixed point was either a stable or an unstable "focus". 
Note that two sets of phase differences at the inlet of the 
medium correspond to this stationary state, because both 
initial conditions Ψ(0) and π – Ψ(0) yield identical 
amplitude distributions in the medium for Δκ = 0. 

If the condition 
 
2 l/L ≥ 4π is satisfied a third 

stationary state appears, which corresponds to Δϕ = ±4π 
(see Fig. 2). Thus even in the simplest case Δκ = 0 and 
δ = 0, we may obtain both bistability and multistabi1ity of 
the system if only the medium is long enough, of the order 
of several conversion lengths L. 
 

 
 

FIG. 1. The dependence of the SH stationary amplitude 
on the Q–factor of the cavity: a) δ = 0, Δ = 0, and 
1/L = 4.4; b) δ = 0.2, Δ = 0, 1/L = 5.5; c) δ = 0, 
Δ = 0.05, 1/L = 4.4; Curve 1 corresponds to stationary 
amplitudes with a nonlinear phase change for one passage 
Δϕ = δ, curves 2 and 3 — to Δϕ = δ ± 2π (for δ = 0 and 
Δ = 0, the stationary states with Δϕ = ±2π feature 
identical amplitudes). The zone of stability and 
instability are shown by solid and dashed curves, 
respectively. 
 

 
 

FIG. 2. The SH stationary amplitude as a function of the 
Q–factor of the cavity for δ = 0, Δ = 0, and l/L = 10. 
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b) The case of an untuned cavity (δ ≠ 0). 
The stationary state with n = 0 and δ < π exists within 

a certain range of the parameter α, in which the nonlinear 
phase change for one passage through the cavity 
compensates for the linear phase change produced by 
detuning, i.e., Δϕ = δ. It is clear that this solution exists for 
arbitrary depth of the nonlinear medium, even for the small 
one (1/L n 1), when the approximation of the prescribed 
field holds. If δ > π the condition Δϕ2 + δ = 2π may be 
satisfied for arbitrary depth 1/L. Moreover, the stationary 
amplitude will be the same as when δ′ = δ – π. This 
happens because for the detunings of δ and δ′ the values of 
Δϕ differ only in their sign, so that phase differences at the 
inlet of the medium are Ψ(0) and π – Ψ(0), and the 
amplitudes are equal to each other. If δ = π the phase 

difference in a stationary state is Ψ(0) = – 
π
2 , and the 

amplitude may be calculated from expression (12) for z0 < 0. 
The depth, for which there exist two simultaneous 

solutions within a certain range of α, may be found from 

the condition Δϕ
Φ

1 + δ ≥ 2π, where Eq. (C5) is used at the 
phase center Φ1 (Δϕ > 0). If 1/L is increased, so that the 

condition Δϕ
Φ

1 + δ ≥ – 2π is satisfied, the third stationary 
state appears (Fig. 1b). It can be seen that for the values of 
the parameters given in this figure legend there exists a 
range of the Q–factors in which both stationary cases 

corresponding to Δϕ
Φ

1 + δ ≥ ± 2π are simultaneously stable. 
When the fixed point corresponding to the stationary 

state with n = 0 becomes unstable, there appears a pair of 
points 1 and 2 in the phase plane, such that if the system is 
at point 1 then after one passage it will be at point 2 and 
then returns back. In our next study we shall demonstrate 
that such a behavior results in the SHG pulses of 
rectangular shape. 

 

c) The case of inexact phase synchronization (Δκ ≠ 0, 
δ = 0). 

 

It follows from expression (4) that the single–pass 
problem has no solutions in the case in which the condition 
ϕ2(z) = ϕ2(0) is satisfied. However, one may find a set of 
solutions satisfying the condition ϕ2(l) = ϕ2(0) for arbitrary 
depth of the nonlinear medium, i.e., the linear phase 
change, produced by detuning from the exact 
synchronization, is completely compensated for by the 
nonlinear phase change. It means that the solution with 
Δϕ = 0 may be constructed within a certain range of α. The 
depth at which a solution appears with the condition 
Δϕ = ± 2π, may be estimated using (B5) once again. As 
demonstrated by the numerical computations, a change in 
the type of stability of the stationary state with Δϕ = 0 may 
occur at Δκ ≠ 0: a "knot" is transformed into a "focus". In 
this case, there exists a range of the (Q–factor values for 
which the stationary states are found with Δϕ = ± 2π 
(Fig. 1c, the upper stationary state is stable for 
0.8 ≤ α ≤ 0.81) and also with Δϕ = 0 and Δϕ = – 2π. 

 
CONCLUSION 

 
Thus the use of the SHG cavity system not only 

results in higher efficiency of conversion of radiation but 
also produces, new stationary and nonstationary regimes. In 
particular, the system may be bistable or multistable, and 
under certain conditions, interrelating the system 
parameters, the stationary states may generally not exist. At 
low values of 1/L (L = 1/σ a1(0) is the conversion  

distance) using a cavity of arbitrary Q–factor does not 
result in new regimes. This is explained by the fact that the 
increase of the intensity of the second harmonic does not 
increase the nonlinear phase change (due to the cavity 
effect) which would be enough for the appearance of a 
second (new) solution. There exists a certain critical 
(threshold) value of 1/L, after it being exceeded, new 
solutions appear in the schemes with cavities of high enough 
(Q–factors. Following a further increase in nonlinearity, 
the nonlinear phase change may become a multiple of 2π, 
which leads to multistable solutions. However, for a fixed 
value of 1/L above the critical one additional solutions 
appear only after the Q–factor of the cavity reaches its 
critical value. The regimes may be used in schemes of the 
SH modulation. One of the variants of these regimes is 
quite special: it is that of the periodically repeated 
rectangular pulses. It will be considered elsewhere. 

 
APPENDIX A 

 
The variables e1 > e2 > e3 in expressions (1)–(3) 

denote the roots of the cubic equation 
 

t3 + Bt + D = 0  (A1) 
 

with the coefficients 
 

,
 

 

. (A2) 

 
The roots of Eq. (Al) may be expressed in the form 

proposed by Cardano7:  
 

, (A3) 

 
where 

 

. (A4) 
 

We give the values of those roots for several 
particular cases. For the separatrix when C = Δ 

 

.  (A5) 

 
When Ñ = 0 (this condition gives the trajectory which 
intersects the origin of the coordinates) 

 

.
 
 (A6) 

 

For phase centers 
 

, 

 (A7) 

. 
 

Apparently, if Δκ = 0 the roots for phase centers Φ1 and Φ2 
coincide with each other. 
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APPENDIX B 

 
In the case of arbitrary Δκ, phase changes of the pump 

wave and the SH with the distance is given by 
 

 

× 

× ,  (B1) 

 

×

 
 

× ×

 
 

× 
 
+ 

 

+

 

+ 

 

+  + 

 

× 

1/2 

× 

 

×  × 

 

×  – 

 

–

 

1/2 

× 

× , (B2) 

 

where m is the parameter of the elliptic functions and the 
parameters of the elliptic integral Π(m1,2; t/m) are given by 

 

.  (B3) 

 
The latter change within 0 ≤ m1 ≤ m, m ≤ m2 ≤ 1. When 
Δκ = 0 and C = 0 (Ψ(0) = ± π/2 or a2(0) = 0) the solution 
(1) is transformed into the well–known solution in the form 
of a hyperbolic tangent.4 As Ψ(0) → ± π/2, the behavior of 
the SH phase may be found expanding Eq. (B2) in a small 

parameter ⎥ C⎥ n 
2

3 
 
3

 : 

 

 
– 

 

– .  (B4) 

 
In the limiting case Ψ → – π/2 Eq. (B4) yields a 

phase discontinuity by π at this point in the medium where 
the SH amplitude turns to zero. Except for this point the 
phases of the radiation with fundamental frequency 
radiation and the SH are constant for the solution 
corresponding to the initial condition Ñ = 0. The functions 
ϕ1(z) and ϕ2(z) are linear functions of z for the case of 
Δκ = 0 and for Δκ ≠ 0: 

 

, 

 

,  (B5) 

 
and the phase difference Ψ(z) remains constant. 

 
APPENDIX C 

 
To determine the matrix T, it is necessary to relate 

the minor deviations δa = a2(0) – as(0), δϕ = ϕ2(0) – ϕs(0) 
at the inlet of the nonlinear medium and the respective 
deviations at the outlet. To do this, we compute the first 
terms in the expansions of expressions (1) and (3) over δa 
and δϕ. Using expressions (8), (9), and (10) we find the 
elements of the matrix 

 

 + 

 

+ + 

 

+  – 

 

– – 
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–

 

,  (C1) 

 

+ 

 

+ 

 

+ 

 

+ × 

 

× ,  (C2) 

 

 – 

 

– 

 

× 

 

× + 

 

+ + 

 

+ – 

 

– ,(C3) 

 

+ 

 

+
 
× 

 

× – 

 

– ,(C4) 

 

where 
 

. 

 

The limits of the integral 
 

 
 

are found as follows: 
 

. 

 

We denote the coefficients proportional to δa and δϕ by x1 
and y1 which appear when we expand the roots (A3) of 
Eq. (A1): 
 

+ 

 

+ . 

 

+ 

 

+ .(C5) 

 

The coefficients Âs and Ds in expression (C5) are the 
same as the coefficients in expression (A2) corresponding to 
Eq. (A1) and βs is determined by expression (A5). Finally, 

 

× 

 

× , 

 

× 

 

× × 

 

× . 
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The coefficients y1 are obtained by substituting Fa in 

expression (C5) by Fϕ and Pa by Pϕ, where 
 

, 

 

. 
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