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The problem of propagation of light beams through a medium with a three–
dimensional parabolic profile of the amplification coefficient has been solved. The 
degree of spatial coherence of the amplified radiation has been found. The spatial 
structure of the radiation in open resonators filled with an active medium, which has 
such a three–dimensional amplification coefficient has been described. 

 
Studies of the formation of the spatial structure of 

light beams in amplifying media without feedback have 
quite a long history. Though the main features of this 
process were clarified in Refs. 1–3, the problem has not yet 
been completely solved. Thus, for example, an analysis of 
light beam amplification in a medium with a three–
dimensional parabolic profile of the amplification coefficient 
was presented in Ref. 1, but the result for arbitrary shape of 
the signal was obtained by summing over the components of 
the Fourier transform, i.e., the problem was solved for the 
case of independent plane waves. The results of numerical 
calculations were presented in Ref. 2, and in Ref. 3 
calculations for two–dimensional media were made. 

There are also certain doubts about the universality of 
one of the main conclusions made in Refs. 1–3 as well as 
more recently in Ref. 5, which states that the radius of an 
amplified beam and its correction length tend toward 
identical values. In the present paper it is shown that 
diffraction of the Gaussian pump beam outside the 
waveguide leads to a quite different result. 

In addition, it is of great interest to analyze the spatial 
mode structure of the beam in an amplifying channel with 
feedback, i.e., in the resonator of superluminescence lasers 
and amplifiers based on Raman scattering (RS) as well as in 
standard lasers with parabolic profile of the amplification 
coefficient of the active medium.6 

The exact theory describing the formation of spatially 
coherent light beams in active media with parabolic profile 
of the amplification coefficient, including media with 
feedback, which is developed in the present paper, is based 
on the use of the method of integration over trajectories.4 
Some of the results presented in this paper were previously 
published elsewhere,7,8 but limitations on the lenght of 
these papers made it impossible to give a comprehensive 
treatment of the problem. 
 

1. AMPLIFICATION IN AN ACTIVE CHANNEL 

WITHOUT FEEDBACK 
 

In a prescribed pumping field the amplification of the 
Stokes wave due to Raman scattering (RS) obeys the 
equation 

 

( )∂

∂z + 
i

2kΔ
⊥

A(r, z) = gIp(r, z)A(r, z) , (1) 

 
where A(r, z) is the complex amplitude of the Stokes wave, k 
is its wave number, Ip(r, z) is the intensity of the pumping 

radiation, and the parameter g is determined by the optical 
nonlinearity of the medium. The wave is assumed to propagate  

along the z axis. The vector r is perpendicular to the z axis 
and Δ

⊥
 is the transverse Laplacian. 

Let us consider the process of amplification in the field 
of a focused Gaussian pumping beam. In the case of 
collinear propagation we have 
 

Ip(r, z) = I
0
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0
/a(z)] 2exp[–2r2/a2(z)] , (2) 

 
where 
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a0 is the radius of the pumping beam upon entrance into the 

nonlinear medium (z = 0), ldp = kp a
2
0/2 is the diffraction 

length of the pumping wave, kp is the wave number of the 

pumping wave, and f is the focal length of the lens. In the 
case of counter interaction of the pumping wave an the Stokes 
wave, the pumping wave is assumed to be prescribed at the 
exit from the nonlinear medium at z = l, where l is the depth 
of the nonlinear medium, and instead of Eq. (3) we have 
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The subscripts col and count stand for the cases of 

collinear and counter amplification. 
The solution of Eq. (1) can be written in terms of the 

continuum integral 
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L
1
(r, ⋅r) = [⋅r(ζ)]2 + 

2g
k  Ip[r(ζ), ζ] ⋅r(ζ) = 

dr

dζ
 . (6) 

 
The differential D2r(ζ) = Dx(ζ) Dy(ζ) indicates 

integration over the trajectories that intersect the points with 
the coordinates x(ζ) and y(ζ), at the end points r(ζ = 0) = ρ 
and r(ζ = l) = r; and the amplitude A

0
(r) = A(r, z = 0). 

We succeeded in our analytical calculations with the 
help of the paraxial approach in which the pumping beam 
profile (2) is approximated by a parabolic profile: 
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Ip(r, z) g [α
0
/α(z)]2 I

0
[1 – 2r2/α

2(z)] . (7) 

 
In this case for the collinear interaction between the 

waves we arrive at the result 
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where  
 

L[r(ζ), ⋅r(ζ)] = [⋅r(ζ)]2 – iμl
–2
dp V

–2
col r

2, l = 2gI
0 
l
2
dp/ld, and 

ld = ka
2
0/2 is the diffraction length. 

The integral factor in the first term in Eq. (8) is equal to 
 

⌡⌠
0
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 V
–2
col(ζ)dζ = ldp arctan(l/ldp)/(1 – l/f). (9) 

 
To calculate the second integral, we transform to the 

new coordinate t = z/ldp and introduce the quantities 

α = ldp/f and τ = l/ldp. The greatest contribution to the 

integral (5) comes from the trajectories that satusfy the Euler 
equation 
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Operating on Eq. (8), we obtain the equation 

 

[(1 – αt)2 + t2]2⋅⋅r + iμr = 0, (11) 
 
which must be solved with boundary conditions 
 
r(t = 0) = r,  r(t = τ) = r. (12) 
 

For optimal trajectories we have 
 

r
0
(t)=[f(t)/f(τ)sin g(τ)]{r sin g(t) – ρf(τ) sin[g(t) – g(τ)]},(13) 

 
where 
 

f(t) = [(1 – αt)2 + t2]1/2,   g(t) = M arctan[t/(1 – αt)], 
 
M = M

0 
exp(iϕ/2),  M

0 
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The contribution of the arbitrary trajectory to the 

integral can be represented as r(t) = r
0
(t) + ρ(t), where 

ρ(0) = ρ(τ) = 0. Then, again operating on Eq. (8) we obtain 
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Thus Eq. (5) takes the form 
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The value C(τ) can be calculated, but it is unessential 

for further analysis. The second term of Eq. (15) can be 
written in the form 
 

⋅rr – ⋅ρρ = r2 
M cotan[g(τ)] + α2τ + τ – α

(1 – ατ)2
 + τ2  + ρ

2{M cotan[g(τ)]+  

 

+ α[(1–ατ)2+τ2]–1/2–2rρMsin–1[g(τ)][(1–ατ)2+τ2]–1/2}.(16) 
 

In the particular case in which the pumping beam is 
focused into the center of the nonlinear medium, Eq. (16) 
becomes symmetric with respect to ρ and r (in this case 
τ = 2α/(1 + α2)) and assumes the following form: 
 

⋅rr – 
⋅
ρρ = (r2 + ρ

2)[M  cotan[g(τ)] + α] – 2rρM/sin g(τ). (17) 
 

In the case of counter interaction between the waves 
the salient feature of the amplification process is a result of 
the fact that the pump is assumed to be located at the other 
end of the amplifying medium (see Eqs. (2) and (4)). 
Therefore, to find the response of the active channel, it is 
sufficient to make the substitutions ρ → r and r → ρ in 
Eq. (16) and consequently in the exponent of Eq. (15). 

The latter circumstance can be used, in particular, for 
analyzing the optical fields in symmetric resonators as well 
as in resonators one or several mirrors of which conjugate 
the phase. Such PC–resonators are very promising since 
their use provides the possibility of automatic compensation 
for both static aberrations of the resonator and random 
phase inhomogeneities.9,10 
 

2. AMPLIFICATION OF STRAY WAVES. 
CORRELATION FUNCTION OF THE FIELD 

 
In what follows we consider the amplification of a 

spatially incoherent signal whose correlation function has the 
form 
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where G
0
 describes the angular distribution of the spectral 

power density of the signal. 
After some quite cumbersome calculations, in the case 

of unfocused beams (f → ∞) and collinear interaction we 
obtain for the entrance spatial correlation function of the 
wave being amplified the following expression: 
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where rcl is the beam correlation length for collinear 

beams, 
 

F(l) = 
2ldp

k M
0
H(l) [ch

2Ns sin
2Nc + cos2Nc sh

2Ns] , 



A.V. Belinskii and A.S. Chirkin Vol. 4,  No. 3 /March  1991/ Atmos. Oceanic Opt.  227 
 

 

a
2
col(l) = 

4ldp

kM
0
 (1 + τ2)H(l)[(sin2Nc + sh2Ns)cos ϕ + 
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and 
 

r
2
cl(l) = 2ldp(1 + τ2)(kM
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H(l) = sh2Nscos(ϕ/2) – sin2Ncsin(ϕ/2) . (20) 

 

Here the following notation was used: 
 

Nc = M
0
cos(ϕ/2) arctan τ,   Ns = M

0
sin(ϕ/2) arctan τ . (21) 

 

First of all let us analyze the ratio of the correlation 
length rcl to the radius of the beam 

 

R = 
2r

2
cl(l)

a2(l)
 = (sin2Nc + sh2Ns)cos ϕ + sh2Ns - sin

2Nc . (22) 

 

The function R(r) calculated for different values of μ is 
plotted in Fig. 1. 
 

 
 

FIG. 1. The doubled square of the ratio of the correlation 
length of the beam to its radius (solid curves) and the ratio 
of the angular divergence of the beam to that of the 
pumping beam (dashed curves) as functions of the 
normalized propagation depth. Figures above the curves 
indicate the values of μ (from 5 to 30). 
 

For high pumping intensities (μ . 1), we obtain 
 

R g sh2Ns – sin2Nc. (23) 
 

The value of R increases with the argument Ns. At small 

values of Nc under conditions in which τ < 1 
 

R ≈ 
2
3 N

4
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2
3 (gI

0
)2l4l

–2
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It turns out that at small depths l < ld < ldp the 

correlation length of the beam is smaller than its radius. This 
ratio increases with l and at large depths (l g ldp) the 

correlation length of the beam is already greater than its  

radius. This result is substantially different from the result 
obtained in Refs. 1–3, where the authors concluded that the 
correlation length and the beam radius tend toward identical 
values. According to Eq. (23) at l . ldp R starts to saturate. 

Let us now consider the behavior of the correlation 
length and the radius of the beam. At small depths (τ n 1) 
the correlation length is equal to 

 

rcl g (8gI
0
l3/3ldp)

1/2, (25) 
 

i.e., it increases with depth. This equation coincides to 
within a constant factor with the approximate result 
obtained in Ref. 2. At depths larger than the diffraction 
length of the pumping beam (τ < 1) we have 
 

rcl g 21/4(kldp)
–1/2μ–1/4l exp[π2

(gI
0
ldp)]

1/2. (26) 
 

In this case the dependence of the correlation length of 
the beam on the depth follows the case of free space. 

Let us now consider the behavior of the radius of the 
wave being amplified for μ . 1. Then we can write 
 

a
2
col(l) = 

4ldp(1 +τ2)

k 2μ
 ⋅ 

sh2N - sin2N
sh2N - sin2N

 , (27) 

 

where N = μ /2 arctan τ. 
If τ n 1, then the radius of the beam decreases with 

depth 
 

a
col

(l) = 4ldp kμl  (28) 
 

In the opposite case (at τ . 1) 
 

acol(l) g 2(kldp)
–1/2(2μ)–1/4l . (29) 

 

In the latter case the dependence of acol on l follows the 

case of free space. At same time, the comparison of 
Eqs. (26) and (29) shows that the diameters of the 
equivalent diffraction apertures for the correlation length 
and beam radius are different. 
 

 
 

FIG. 2. Squared correlation length (solid curves) and beam 
radius (dashed curves) normalized by the radius of the 
pumping beam as functions of the normalized depth. Figures 
above the curves show the values of μ (from 5 to 30). 
 

According to Eqs. (25) and (26), the correlation length 
of the beam increases monotonically with depth and only the 
rate of increase varies. At the same time, the dependence of  
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the beam radius on depth appears to be nonmonotonic: the 
initial decrease of the radius is then followed by its increase 
(Fig. 2). This conclusion agrees fairly well with the calculated 
results.2 

In the case of counter interaction, the correlation 
function has the form 
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, r
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where C(l) is a constant, 

 

a
2
count(l) = a

2
col(l)/(1 + τ2), 

 

and 
 

r
2
ccl = r

2
cl(l)/(1 + τ2). (31) 

 

From Eq. (30) we find that differences between the 
correlation length and the beam radius for collinear and 
counter interaction between the waves are observed at τ > 1, 
i.e., when the effects of diffraction of the pumping wave are 
noticeable. It can easily be seen that in this case for counter 
interaction between the waves the correlation length and 
beam radius become independent of the interaction length. 
In other words, only the region of the amplifying medium 
adjacent to its exit and of depth ldp has an appreciable 

effect on the amplification process. 
Our results have been used in the analysis of beam 

shaping in amplifying media with feedback. The theory 
developed in this paper can also be used for solving 
problems of amplification of partially coherent beams. The 
propagation of such beams through amplifying media with 
longitudinal inhomogeneities was analyzed in Ref. 5 using 
the density matrix formalism and the method of integrals of 
motion. In this analysis the limiting value of the correlation 
length of the delta–correlated initial beam coincides with 
the beam radius. 
 

3. MODE STRUCTURE OF THE FIELD IN A  
RESONATOR WITH AN ACTIVE MEDIUM 

 
In general the problem of describing the 

electromagnetic fields inside a resonator formed by two 
mirrors of arbitrary shape reduces to an analysis of an 
integral equation for the complex amplitude A(ρ) of the 
field at one of the mirrors, which has the form 
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where ρ = {x, y} is the vector perpendicular to the z axis, 
the arrows under the symbols indicate the direction of 
propagation of the corresponding waves, 

←
a and 

→
a are the 

eigenvalues of the equation, R
1
 and R

2
 are the amplitude 

(in general complex) reflectances of the mirrors, G(ρ, ρ
1
) 

are the Green's functions, and the integrals are taken over 
the surfaces of the mirrors. 

If a medium with parabolic profile of the complex 
extinction coefficient completely fills the volume of the 
resonator, then the Green's function is given by: 
 

G(ρ,
 
ρ

1
) = h exp(–αρ2 – βρ

2
4 – 2γρρ

1
) , (33) 

 
given that the optical axis of the resonator coincides with 
the axis of symmetry of a medium. Here h is a constant, and 
α, β, and γ are complex coefficients. Let us assume for 
simplicity that the mirror apertures greatly exceed the 
transverse dimension of the amplifying active medium 
channel. In addition we shall assume that the resonator is 
symmetrical not only about its axis but also about the 
origin of the x, y, z coordinate system. In this case α = β, 
the variables x and y separate and taking Eq. (33) into 
account, Eq. (32) can be represented in the form 

 

A(x) = ah⌡⌠
–∞

∞

A(x
1
) exp(–β(x2 + x

2
1) – 2γxx

1
) dx

1
 , (34) 

 
where the constant factor of the reflectance is contained in 
the constant a, and the phase delay caused by a possible 
parabolic (spherical in the paraxial approximation) shape is 
contained in the coefficient β. 

We will show that the modes which take the form of a 
polynomial of degree m multiplied by a Gaussian factor 

 

Am(x) = (Cmxm + Cm–1x
m–1 + ... + C

0
)e–qx2 = 
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are the solutions of Eq. (34) for Re q > 0. By substituting 
Eq. (35) into Eq. (34) and by making use of the identity 

 

⌡⌠
–∞

∞

A(xm)exp(–Px2
 – Qx)dx = (–1)m

π

P 

∂mexp(Q2/4P)
∂Qm  , (36) 

 

we see that both sides of this equality contain polynomials 
of degree m multiplied by the factor exp(–qx2) and the 
condition 
 

q2 = β2 – γ2,  (Re q > 0) (37) 
 

must be fulfilled. It also follows from Eq. (36) that the 
coefficients Cm are the Hermite polynomials with complex 

variables. 
Thus, the problem is reduced to finding the 

eigenvalues am by direct substitution from the condition of 

the identity of the polynomials. At the same time, it should 
be the case that the eigenfunctions of Eq. (34) are 
determined only to within a constant factor and that for 
even m the odd coefficients C

2m–1
 are equal to zero, and 

conversely for odd m the even coefficients vanish. 
Let us now present some calculational results (the 

serial order corresponds to m). 
Fundamental mode: 
 

a
0
 = h–1π–1/2(β + q)1/2

,
 (38) 

 
where C

0
 is the normalization coefficient. 
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The first mode: 
 

a
1
 = – (γh)–1π1/2(β + q)3/2 , (39) 

 
where C

1
 is also the normalization coefficient. 

The second mode: 
 

a
2
 = h–1γ–2π–1/2(β + q)5/2 , (40) 

 

where C
0
/C

2 
= –1/4q. 

Generalization of Eqs. (38)–(40) leads to an 
expression for the eigenvalue of an arbitrary mode m 

 

a
m
 = (– 1)mh–1γ–mπ–1/2(β + q)m+1/2 . (41) 

 

Finally, the following interesting fact should be noted. 
The volume–distributed action of a medium with parabolic 
profile of the amplification coefficient can always be replaced 
by corresponding free space zones concentrated in a certain 
plane. This follows from the identity of the integral relation 
between the entrance and exit waves written in terms of the 
Green's function. As applied to our analysis of a symmetric 
resonator, this means that instead of a resonator filled with a 
medium with parabolic profile of the amplification coefficient, 
it is possible to consider the same resonator but filled with a 
homogeneously amplifying medium at the center of which a 
thin lens is located whose aperture is limited by a diaphragm  

with soft edges and whose amplitude transmission coefficient 
profile has Gaussian shape in the transverse direction. It is 
possible that such a simple model will be useful for the grafic 
interpretation of our results. 
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