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The spatial structure of a Gaussian laser beam reflected from a specular, corner–
tube and Lambertian reflectors of arbitrary size positioned in a lens–like defocusing 
aberrational–free medium is investigated theoretically. On the basis of the analysis of 
the mutual coherence function of the second order of reflected sounding radiation, the 
possibilities are examined of using the round–trip–path modification of the techniques 
of thermal lens, mirage effect, refocusing, and displacement of an image in order to 
determine the optical parameters of the investigated medium.  

 
The methods of optical–refraction spectroscopy 

developed now1-5 are usually used in their base 
modification. The base configuration of sensing of a lens–
like medium (a refraction channel) assumes that the source 
and the receiver of optical radiation are positioned at the 
opposed ends of the measuring path and that sounding 
radiation passes once through an investigated medium. 
However, in the particular situations it is possible to use 
the round–trip–path modification of sensing of a lens–like 
medium, in which the source and the receiver of optical 
radiation are positioned at one end of the measuring path 
while the sounding radiation passes twice through an 
investigated medium. This may either help to conveniently 
arrange the instrumentation, or to increase the path length 
passed by sounding radiation through a lens–like medium, 
or may be used to study the opaque media, which absorb 
pumping radiation and reflect sounding radiation. The 
propagation of the optical radiation along the round–trip 
path through a lens–like medium was first considered in 
Ref. 4, but only the cases of specular reflection from the 
infinite flat and point reflectors were treated there. In this 
paper the spatial structure of a laser beam reflected from 
the specular, corner–cube, and Lambertian reflectors of 
arbitrary size positioned in a lens–like defocusing 
aberration–free medium is studied theoretically. The 
possibilities of using the round–trip–path modification of 
the techniques of thermal lens,1–3 mirage effect,1,3 
refocusing,4,5 and displacement of an image4,5 for the 
determination of the optical parameters of the investigated 
medium are studied here.  

Let a beam of laser sounding radiation be propagated 
through an aberration–free defocusing lens–like medium (a 
refraction channel),4–6 and the beam optical axis coincides 
with the 0x axis. The beam propagates in the positive 
direction along the 0x axis from the plane x = 0 to the 
reflector positioned in the plane x = L. Let this beam be 
received in the plane x = 0 after its reflection and propagation 
in the backward direction along the 0x axis. The formula for 
the amplitude of the reflected wave U(0, q) in this case can 
be written as follows:  
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where V(q′, q′′) is the local reflectance, G(L, q′′; 0, q′′′) is 
the Green's function of a lens–like medium describing the 

"forward" propagation of the wave,6 G
~
(0, q; L, q′) is the 

Green's function of a lens–like medium describing the 
"backward" propagation of the wave,6 and U

0
 (q′′′) is the 

initial distribution of a laser radiation field. q = {y, z} is 
the transverse coordinate. In accordance with formula (1), 
the coherence function of the second order of reflected 
radiation has the form  
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where a bar denotes statistical averaging over an ensemble 
of realizations of fluctuations of the heights of the reflector 
surface roughness. Let the initial distribution of the field of 
a laser source be taken to be in the form of a single–mode 
Gaussian beam  
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where U
0
 is the amplitude of the optical field at the center 

of the exit aperture, a
0
 is the initial radius of the sounding 

beam, R
0
 is the curvature radius of the wavefront at the 

center of the radiating aperture, k = 2π/λ, λ is the 
wavelength of the sounding radiation in the vacuum, q

0
 is 

the radial distance which determines the displacement of the 
center of the radiating aperture with respect to the optical 
axis of the channel, n is the unit vector of the projection of 
the normal to the phase front upon the YOZ plane, ϕ is the 
angle between the normal to the phase front of a beam and 

the optical axis of the channel (ϕ n π), and q = y2 + z2.  
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The Green's functions for "forward" and "backward" 
propagation of a beam through the aberration–free lens–like 
medium, whose optical axis coincides with the 0x axis, have 
the form:6 
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where U
1
(x) and U

2
(x) and U

~
1
(x) and U 

~
2
(x) are the 

corresponding partial solutions of the equations  
 

U′′(x) – 
F2

0

F2(x)
 U(x) = 0 

 

and  
 

U
~

′′(x) – 
F2

0

F2(L – x)
 U
~

(x) = 0 

 

with the boundary conditions  
 

U
1
(0) = U'

2
(0) = U

~
1
(0) = U

~
'
2
(0) = 1, 

 

U~
1
(0) = U

2
(0) = U~ '

1
(0) = U~

2
(0) = 0, 

 

while F(x) is the local focal distance of a lens–like medium 
(a refraction channel)4,5 F

0
 = F(x = 0) is the "initial" focal 

distance of a lens–like medium. Now we will consider the 
reflection from a specular, corner–cube, and rough 
(Lambertian) surfaces. In the first two cases the local 
reflectance V(q′, q′′) is the deterministic function while in 
the third case – the random function. Specifically for a flat 
mirror, local reflectance is equal to  
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and similarly for a corner–cube reflector –  
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while for the Lambertian surface the following relation is 
satisfied:  
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where  
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V0 is the amplitude of the reflectance, a
eff

 is the effective 

radius of the reflector, and q
eff

 is the radial distance 

determining the displacement of the reflector center with 
respect to the optical axis of the channel.  

By substituting Eqs. (3)–(6) into formula (2), we 
calculate the mutual coherence function of a Gaussian beam 
reflected by a flat mirror while calculations according to 
Eqs. (2)–(5) and (7) yield the mutual coherence function of a 
Gaussian beam reflected by a corner–cube reflector. The 
results in both cases can be represented in the following way: 
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is the intensity of reflected radiation at the point (0, q
l
), 

l = 1, 2;  
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is the radius of the reflected laser beam in the receiver planes;  
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is the radius of the laser beam in the reflector plane;  
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are the tilts of the wavefront of the reflected laser beam 
with respect to the optical axis of a refraction channel 
(these tilts are caused by the displacement of the radiating 
aperture with respect to the optical axis of a lens–like 
medium, by the slope of that aperture with respect to the 
axis, and by the displacement of the reflector center with 
respect to the axis, respectively);  
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ξ = L/F
0
 is the ratio between the distance from the 

source–receivers plane (x = 0) to the reflector plane 
(x = L) and the initial focal distance of a lens–like 

medium; μ = F
0
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0
 is the ratio between the initial focal 

distance of a lens–like medium and the curvature of the 
wavefront of the initial sounding wave; and,  is the Fresnel 
parameter of the radiating aperture. The minus sign in 
Eq. (9) corresponds to reflection from a flat mirror and plus 
sign – from a corner–cube reflector. In addition, the 
derivative with respect to ξ in the expression for the 
curvature of the wavefront of the reflected laser beam is 

taken only of the functions U
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consider first the limiting cases of the reflector size, namely, 
the infinite (a

eff
 → ∞) and the point (a

eff
 → 0) reflectors.  

When a Gaussian beam is reflected from an infinite 
specular (or corner–cube) reflector (V
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(q) = V
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), formula 

for the mutual coherence function of the second order (9) 
assumes a simpler form  
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Here the functions a~(ξ), S
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same meaning as the functions a(ξ), S(ξ), S
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(ξ), and S
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in Eq. (9). The comparison of Eq. (10) for the mutual 
coherence function of the second order of the Gaussian beam 
reflected from an infinite specular reflector with the similar 
formula for the beam which passes the path once (a base 
scheme)4,5 reveals their identical structure. The only 

difference is that the functions U
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formula (10) while the functions U
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the formula for the coherence function of the laser beam 
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constant focal distance we have U
1
(ξ) = U

~
1
(ξ) = ch(ξ), 

U
2
(ξ) = U

~
2
(ξ) = sh(ξ) and U

∧

1
(ξ) = ch(2ξ), U

∧

2
(ξ) = sh(2ξ), 

i.e., Eq. (10) is identical to the formula for the mutual 
coherence function of the second order of the beam which 
passes a path of length 2L only once. A corner–cube reflector 
reflects the radiation precisely in backward direction but this 
reflection pattern results only in changing of the direction of 
the center shift and the tilts of the wavefront of the reflected 
beam in comparison with the specular reflection. Thus, in the 
case when the beam is reflected from an infinite reflector, the 
round–trip–path modification of the methods of thermal 
lens,1–3 mirage effect,1,3 refocusing,4,5 and displacement of an 
image has principally the same capabilities as the base scheme. 
They differ only in the sensitivity of the functions 
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distance F(x) of the lens–like medium. However, this problem 
has already been examined in Ref. 4.  

When a Gaussian beam is reflected from a point reflector  
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the mutual coherence function of the second order can be 
expressed as follows:  
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It follows from Eq. (11) that this case is equivalent to the 
case of propagation of a spherical wave with the amplitude; 
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). Thus, the round–trip–path modification of the 

technique of mirage effect1,3 based on the measurements of 
the coordinates of the center shift of a sounding beam 
cannot be used with the point reflector, and the method of 
thermal lens,1–3 which consists in recording the intensity of 
a sounding beam with the use of a point diaphragm, 
becomes virtually inapplicable. On the contrary, the 
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For short paths (L < F
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 ) this yields a result analogous to 

that obtained for a base scheme4–5  
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For ξ >~ 1 the curvature and tilt of the wavefront of 

reflected radiation are highly sensitive to the focal distance 
of the lens–like medium, for both Ω

0
 . 1 and Ω

0
 n 1. Note 

in particular that the curvature of the wavefront of reflected 
radiation (see Eq. (9)) is independent of the type of the 
reflector, whether it is specular or corner–cube.  

To obtain the mutual coherence function of the second 
order of a Gaussian beam reflected from a rough (Lambertian) 
surface, let us substitute Eqs. (3)–(5) and (8) into Eq. (2) 
and calculate the integrals which enter in them. This makes it 
possible to derive the following formula:  
 

Γ
2
(0, R, q) = 

U2
0
 V2

0
 a2

0
 a2

eff

4πF2
0
U
~

2
2
(ξ)[a2

eff
 + a2

0
(ξ)]

 ×  

 

× exp

⎩
⎨
⎧ 

–

 

(q
eff

 – R
2
(ξ))2

a 2
eff

 + a2
0
(ξ)

 –  
ρ2

ρ2
k
(ξ)

 + 
ik
F

0
 S
∧
(ξ) Rq –  

 

– 
ik
F

0
 [S

∧

1
(ξ) q

0
q + S

∧

2
(ξ) F

0
ϕnq + S

∧

3
(ξ) q

eff
q]

⎭
⎬
⎫

 

 

, (12) 

where  
 

S
∧
(ξ) = U

~ ′
2
(ξ)/U

~
2
(ξ); 

 

S
∧

1
(ξ) = 

a2
eff

a2
eff

 + a2
0
(ξ)

 
U

1
(ξ)

U
~

2
(ξ)

 ; 

 

S
∧

2
(ξ) = 

a2
eff

a2
eff

 + a2
0
(ξ)

 
U

2
(ξ)

U
~

2
(ξ)

 ; 

 

S
∧

3
(ξ) = 

a2
0

a2
eff

 + a2
0
(ξ)

 U
~

–1
2

(ξ) ; 

 

ρ
k
(ξ) = 

2F
0
U
~

2
(ξ)

ka
eff

a
o
(ξ)

 a2
eff

 + a2
0
(ξ)  

 

is the coherence radius of the reflected radiation. The 

functions S
∧
(ξ), S

∧

1
(ξ), S

∧

2
(ξ), and S

∧

3
(ξ) in the case of reflection 

from a rough surface denote the physical variables analogous 
to the functions S(ξ), S

1
(ξ), S

2
(ξ), and S

3
(ξ) which enter in  
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Eq. (9) in the case of reflection from a regular surface. When 

the beam is "completely intercepted" (a
eff

 . a
0
(ξ)), the 

intensity of the reflected radiation is approximately equal to  
 

U2
0
 V2

0
 a2

0

4πF2
0
 U
~

2
2
(ξ)

 exp 
⎩
⎨
⎧

⎭
⎬
⎫

 – 
(q

eff
 – R

2
(ξ))2

a 2
eff

 
, (13) 

 

while 
 

S
∧

1
(ξ) g U

1
(ξ)/U

~
2
(ξ) , S

∧

2
(ξ) g U

2
(ξ)U

~
2
(ξ) , 

 

S
∧

3
(ξ) g 0, ρ

k
(ξ) g 2F

0
U
~

2
(ξ)/[ka

0
(ξ)] . (14) 

 

The analysis of Eq. (12) for the mutual coherence 
function of the second order of the Gaussian beam reflected 
from a rough (Lambertian) surface showed that the techniques 
of thermal lens and mirage effect are inapplicable in this case: 
reflection from a randomly uneven surface destroys the spatial 
structure of a laser beam. At the same time, methods of 
refocusing and displacement of an image of the sounding beam 
remain applicable in this situation, as can be seen from 
Eqs. (12) and (14).  

In conclusion it should be noted that the above study of 
the propagation of a laser beam along the round–trip path  

through a lens–like medium, when the beam is reflected from 
a specular, corner–cube, and rough (Lambertian) surfaces, 
demonstrated the wide possibilities of using the methods of 
refocusing4,5 and displacement of an image of a sounding 
beam4,5 for the measurement of the optical parameters of an 
investigated medium, whereas the round–trip–path 
modification of the methods of thermal lens and mirage effect 
is applicable only if a beam is reflected from an infinite 

(a
eff

 . a
0
(ξ)) specular or corner–cube reflector.  
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