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A method for calculating the average values and correlation functions of brightness of 
the radiation reflected by the system ground–atmosphere with an account of the topographic 
roughness and the occurrence of stochastic cloud field in the atmosphere has been developed. 

 
In order to solve a great number of practical problems 

it is necessary to know the fluctuation statistical 
characteristics of brightness of the radiation reflected by the 
ground and by the atmosphere.1,2 Many factors are 
responsible for these fluctuations, namely, the stochastic 
variations of the optical properties of the atmospheric 
aerosol3,4 and of the ground5,6 in time and space, the 
occurrence of cumulus clouds in the atmosphere, and the 
topographic roughness.  

The purpose of this paper is to develop methods for 
calculating the average values and the correlation functions 
of brightness of the reflected radiation with an account of 
all these factors.  

The stochastic cloud layer of the atmosphere is 
illuminated by the solar radiation incident in the direction 
of the unit vector Ω

0
 (Fig. 1). We will describe the optical 

properties of the atmosphere by the horizontally averaged 
attenuation index <ε(z)> and of differential index of light 
scattering at the angle γ<σ(z; γ)> and by the correlation 
functions of these characteristics,  
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Here and below, the angular brackets denote averaging 

and the tilde stands for the deviation of random parameter 
from its average value. We assume that the horizontal scale 
of the fluctuations of the parameters of scattering of the 
atmosphere L⊥ satisfies the condition of the local 

homogeneity,7,9 namely, L⊥ 
> R⊥, where R⊥ is the width of 

the Green's function of the atmosphere. We assume that the 
lower boundary of the atmosphere is a stochastic 
quasidiffusely reflecting surface. Let us assume that the 
stochastic character of the ground is due to two factors, 
namely, the topographic roughness and the random 
character of variations of the luminance factor of the 
ground. The requirement of the quasidiffuse reflection 
corresponds to an assumption that the luminance factor 
varies insignificantly within the width of angular brightness 
distribution of the radiation incident on the ground. For the 
earth's atmosphere, the width of the angular distribution of 

the brightness field is ∼ 10°, so most surfaces, with the 
exception of specularly reflecting ones, satisfy the 
requirement of quasidiffusive reflection.5,6  

 
 

FIG. 1. The geometry of the problem.  
 

The relation for the brightness B(p; Ω) of radiation 
reflected at the point p of the stochastic surface in the 
direction Ω, was written in Ref. 10:  

 

B(p; Ω) = ⌡⌠
2π

 
dΩ′
 π  β(p; Ω; Ω′)⏐Ω′⋅N(p)⏐B

0
(p; Ω′), 

 

where β(p; Ω; Ω′) is the luminance factor of the ground 
B

0
(p; Ω) is the brightness of the incident radiation, and 

N(p) is the normal to the ground surface at the point p 
(Fig. 1). In a small–angle approximation, the brightness of 
the quasidiffusely reflecting surface can be written down in 
a much simpler form. Since B

0
(p; Ω′) has a peak in the 

direction Ω
0
, we have for the quasi–diffusely reflecting 

surface β(p; Ω; Ω′) g β(p; Ω; Ω
0
). However, owing to a 

strong angular anisotropy of B
0
(p; Ω′) we obtain  
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where E
0
 = ⌡⌠

2π

 dΩ′μ′B
0
(p; Ω′) is the solar illuminance at the 

point p in the case of the plane ground surface; μ′ and μ
0
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are the direction cosines of the vectors Ω′ and Ω
0
 with the z 

axis. Thus, for the quasi–diffusely reflecting surfaces in the 
small–angle approximation we have the following formula:  
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0
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 π  , (1) 

 
where 
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With account of Eq. (1), the brightness of radiation at the 
top of the atmosphere  

 

I(p; Ω) = D(p; Ω) + ⌡⌠dp′f(p′; Ω
0
; Ω)E(p′)G

0
(r; p′; Ω) , (3) 

 

where f(p; Ω
0
; Ω) = 

β(p; Ω
0
; Ω)C(p)

 π  ; G
0
(r; p′; Ω) is the 

Green's function of the atmosphere for the diffuse sources, 
and D(p; Ω) is the brightness of atmospheric haze.  

In the case, in which the condition of local 
homogeneity in the atmosphere is satisfied, the horizontal 
scale of variation of the illuminance E(p′) is of the order of 
L⊥ and is much greater than the width of the Green′s 

function G
0
(r; p′; Ω). Based on this, Eq. (3) can be 

simplified as follows:  
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where  
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and  
 
E

0
(p) = E(p – bzs), (6) 

 
where b = Ω⊥/⏐μ⏐, Ω⊥ is the projection of Ω onto the top 

of the atmosphere, and μ is the direction cosine of the 
vector Ω with the z axis.  

From Eq. (4), it is easy to derive the relations for the 
average brightness of the reflected radiation <I> and for the 
second moment of this quantity 
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moments of the second, third, and fourth order of the 
functions E

0
(p), U(p), and D(p). The relation for E

0
(p) 

and D(p) have been obtained in Refs. 7 and 8 and have the 
following form:  
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where E
0
 is the illuminance at the top of the atmosphere, zs is 

the thickness of the atmospheric layer, ru = {p – α(zs – u); u}, 

α = Ω⊥0
/μ

0
 , Ω⊥0

 is the projection of Ω
0
 onto the top of the 

atmosphere, σ(p; z; Ω⋅Ω
0
) is the differential index of light 

scattering at the point r = {p; z} of the medium, which 
describes the scattering of radiation propagating in the 
direction Ω

0
 in the direction Ω, E(p; z) is the illuminance 

of the medium at the point {p; z}, T(p; Ω; z
1
) is the 

stochastic transmittance of the medium, which determines 
the brightness of radiation at the point {p; z} in the 
direction Ω produced by the diffuse spatially unbounded 
source located in the plane z = z

1
, and k*(r) is the effective 

absorption index of the medium.8 Let us perform the further 
analysis for the Gaussian model of stochastic atmosphere 
presented in Refs. 7–9 which can be employed for the 
description of the propagation of radiation through the 
cloudless atmosphere, fog, and cirrus clouds when the 
vertical scales of inhomogeneities L⎢⎢ < zs. In this case, 

based on the central limiting theorem,11 it is possible to 
state that the values U(p) and D(p) are approximately 
Gaussian ones. For the Gaussian model, it is not difficult to 
show that the fluctuations of the quantity E

0
(p) are described, 

strictly speaking, by a lognormal distribution function. 
However, as the estimates show, for the optical thicknesses of 

the atmosphere τ ≤ 5, the value τk* = ⌡⌠
0

zs

 k*(ru)du, which 

determines the values of illuminance, is much smaller than 
the unity. In this case, the lognormal distribution is close to 
the normal one and so E

0
(p) can be considered to be a 

normally random quantity. For the normal values E
0
(p), 

U (p), and D (p) the moments of the third and fourth 
orders are easy expressed in terms of the moments of the 
second order.11 As a result, in the case of horizontally 
homogeneous fluctuations of the optical parameters of the 
atmosphere and of the reflecting surface, we obtain  
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It is obvious that the random function f(⋅), which 
enters into Eq. (3), is uncorrelated with the other random 
functions D (p), E

0
(p), and G

0
(r; p′; Ω). With an account 

of this, it is not difficult to verify that  
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and Mff(p′; p′′) = <f(p′)f(p′′)> are the second moments of 

the Green′s functions and of the function f(p), which enters 
into Eq. (3). When the conditions of local homogeneity are 
satisfied and the fluctuations of the scattering parameters of 
the atmosphere and of the reflecting properties of the 
ground are horizontally homogeneous,  

 

Muu(Δ) = 
⌡⌠

 
dω
4π2 

∧
Mff(ω)Mtt(ω; Δ)exp(iω⋅Δ) , (12)  

 

where M
∧

ff(ω) is the Fourier spectrum of the function Mff(Δ) 

and Mff(ω; Δ) = <T(ω; p
1
)T(ω; p

2
)> is the second moment 

of the local unnormalized optical transfer function (OTF) of 
the cloudy medium T(ω; p) (see Ref. 9).  

The analysis performed shows that, in order to 
calculate the statistical characteristics of the radiation 
brightness, it is necessary to know the first moments, 
namely, <f>, <E

0
>, <D>, and <T(p; Ω)> as well as the 

second moments, namely, Mdt(Δ), Met(Δ), Mee(Δ), Mdd(Δ), 

Mde(Δ), Mgg(p′; p′′; Δ), and Mff(Δ). A technique for 

calculating the moments of the first order <E
0
>, <D>, and 

<T(p; Ω)> and of a number of the moments of the second 
order, for instance, Mee(Δ) and Mdd(Δ), has been described 

in Refs. 7–9. The rest of the moments, which are required 
for the calculation, can be found in a similar way. Whereas 
the final relations have a cumbersome form we will not give 
them here and restrict ourselves by consideration of a more 
particular case, in which the data already given here and 
those published in the literature are sufficient for 
calculating the statistical characteristics.  

The results of calculations of the light fields in the 
atmosphere7–9,12 show that the fluctuations of the 
illuminance, diffuse transmittance, and brightness of 
atmospheric haze are determined by the magnitude of 
fluctuations of the effective optical thickness of the 

absorption of the atmosphere τ*k = 
⌡⌠
0

zs

k*(r)dz, where 

k* = k + σΦ is the effective absorption index, k and σ are 
the absorption and scattering indices of the cloudy medium, 
and Φ is the relative fraction of light that is scattered 
backwards in a single scattering act. At the same time, the 
fluctuations of the local OTF are determined by the 

fluctuations of the optical thickness of the atmosphere 

τ = 
⌡⌠
0

zs

ε(r)dz. For the cloudy medium in the visible range 

the value of  is smaller than τ by a factor of ∼ 20. 
Therefore, in the case of occurrence of the semi–transparent 

clouds in the atmosphere, for which τ*
k
 n 1, it is possible to 

ignore the fluctuations of brightness of the atmospheric 
haze, illuminance, and diffuse transmittance compared to 
the fluctuations of the local OTF. In this case, replacing the 
random quantities E, T(p; Ω), and D by their average 
values we obtain  
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0
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0
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A simple relation for the correlation function of 

brightness of the reflected radiation Rii(Δ) = Mii(Δ) – <I>2 

follows from this  
 

Rii(Δ) = <E
0
>2Ruu(Δ), (15)  

 
where Ruu(Δ) = Muu(Δ) – <u>2 is the correlation function of 

U (p).  
We have given here the relation for horizontally 

homogeneous fluctuations of the parameters of the 
atmosphere and underlying surface. Its generalization to the 
case of horizontally inhomogeneous fluctuations is obvious 
and is not met with any difficulties.  

For  τ*
k
 n 1, it is simple enough to find the variance of 

fluctuations of the brightness σ
2

i  within the scope of a 

Poisson model of the stochastic atmosphere as well.12 It 
then follows from Eq. (4) that  

 

σ
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>2σ 

2
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where σ
2

u is the variance of the random quantity U(ρ). It is 

obvious that  
 

σ2
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dω
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∧
Mtt(ω; 0) – <U>2. (17) 

 
The functions <f> and Mff(Δ), which describe the 

statistical properties of the reflecting surface, can be found 
based on Eq. (1). It is obvious that in this case the random 
functions b(⋅) and C(⋅), which describe two statistically 
independent processes, namely, the variation of the 
luminance factor as functions of the position at the ground 
and the local topography are not correlated, therefore, 

 

<f> = 
<β><C>

π ,  and  Mff(D) = 

Mββ(Δ)
 
Mcc(D)

π2  , 

 
where Mββ(Δ) and Mcc(Δ) are the second moments of the 

luminance factor of the ground and of the function C(p), 
which describes the ground profile.  

In the scope of a Poisson model of clouds, the second 

moment of the unnormalized local OTF M
∧

tt(ω,0) can be 

found following the technique of Ref. 12.  
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where M
–

 is the mean number of individual clouds on a 
segment of length z, χε(⋅) is the characteristic function that 

describes the fluctuations of the attenuation index of the 
cloud ε, η

0
(x), which is equal to unity for x < Δ

0
 and to 

zero for x > Δ
0
, is the indicator function, Δ

0
 is the cloud size 

along the z axis,  
 

Fω(t) = 1 – Λ*Q(ωt),  
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Λ is the survival probability of the light quantum in a 
single scattering act, and i(γ) is the scattering phase 
function of the medium. For example, for the scattering 
phase function, which is described by the small–angle 

Henyey–Greenstein approximation12 i(γ) = 2α(α2 + γ2)–3/2, 

where α = (1 – μ
–

)μ
––1/2, μ

–
 is the mean cosine of the 

scattering angle, and  
 

Q(ωt) = exp(–αp) . (19) 
 

As an example, let us consider a cloudy medium, 
which has the exponential distribution of the scattering 
index of the clouds. The characteristic function χε(v) for 

the model has the following form:  

χε(v) = 
1

1 – iε
0
v
 , (20)  

where i = –1 and ε
0
 is the mean attenuation index of the 

clouds. For the model of the scattering medium described by 
relations (19) and (20) and for the spatial frequencies 
satisfying the condition αωz n 1, it is possible to obtain a 

simple relation for the moment M
∧

tt(ω; 0)  
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where bn = nε
0
Δ, Sn = 1 + bn(1 + bn(1 – Λ*), and g = aωz. 

The range of applicability of formula (21) used to calculate 
the fluctuations of brightness can be easily found from 

relation (17). Since the width of the Fourier spectrum M
∧

ff(ω) 

is of the order of the scale of the fluctuations of the reflecting 
properties of the surface δf , it is obvious that formula (21) can 

be employed for analyzing the brightness fluctuations of the 
radiation reflected by the ground with large–scale 
inhomogeneities of the reflecting properties satisfying the 

condition p* = 
αz
δf

 ≤ 1.  

 
 

FIG. 2. The relative fluctuations of brightness of the 
radiation reflected by the system atmosphere–ground 
calculated for b

1
 = 5, b

1
 = 0.5, and Vf = 0 (1) , 0.1 (2) , 

0.3 (3) , 0.4 (4) , and 0.5 (5) .  
 
For model (20), some simple relations for the first two 

moments of the diffuse transmittance can be written down as 
well 
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The methods of determining the function Mff(Δ) 

depending on the statistical characteristics of the local 
topography and the structure of the landscape are described in 
the monograph Optical Image for Remote Observation 
indicated above. In this paper, we will consider a simple 
model of the ground, which admits an analytical solution of 
the problem and permits one to consider qualitatively the main 
characteristic features of formation of the radiation field  
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σ

2

fσ
3

f

(Δ2 
+ δ

2

f)
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 , (24) 

 

where  is the variance of f(p). In this case, based on 
Eqs. (17), (21), and (24) for the relative fluctuations of the 
brightness Vu, we obtain  
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⎣
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⎦
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2

f
<T 2>
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1
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2

t
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where Vf are the relative fluctuations of the quantity f(p),  

 

Vt = 
⎣
⎢
⎡

⎦
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⎤<T 2> – <T>2
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1/2 

 

are the relative fluctuations of the diffuse transmittance of 
the cloud layer, and  
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Ψ = 
M
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2
 

Λ*
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2

 . 

 

The dependence of the relative fluctuations of 
brightness of the reflected radiation on the dimensionless 
parameter p* is illustrated in Fig. 2. It is evident from the 
figure that the values of Vu monotonically decrease as the 

values of p* increase. This means that the magnitude of the 
relative fluctuations of brightness decreases as the angular 
scale of fluctuations of the ground and the degree of 
elongation of the scattering phase function decrease. With 
increase of Vf , the quantity Vu monotonically increases. 

Physical interpretation of these dependences is clear enough 
and is associated with the scattering of the light reflected 
from the ground by the cloudy medium. It is obvious that, 
when the angular scale of the fluctuations of the 
inhomogeneities of the ground and the elongation of the 
scattering phase function decreases the "smearing" of the 
image of the surface elements become more pronounced, 
while the variance of the brightness decreases.  
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