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The results of calculations are presented of certain spectroscopic characteristics of the 
formaldehyde molecule including the transition probabilities and the oscillator strengths of the 
dipole transitions in the vacuum UV range of molecular spectrum improving the theoretical 
and experimental data obtained previously. The calculations were based on the method of the 
motion equations taking account of the most important correlation effects using a scheme which 
was proposed and checked previously. These results (some of them were first obtained) can be 
useful in a wide variety of applications including the atmospheric optics.  

 
Introduction. Formaldehyde as gaseous impurity is 

present in the Earth's atmosphere as well as in the 
atmospheres of other planets. Considerable interest in 
studying its spectroscopic characteristics was stimulated 
when formaldehyde was recently discovered in the 
interstellar dust clusters.1 Also of interest are certain 
extraordinary characteristics of the molecular spectrum of 
formaldehyde and the parameters of this spectrum in the 
vacuum UV range.2-13 It is well known that studies of the 
photochemical reactions of carbonyl compounds including 
the mechanisms of such reactions are intimately related to 
the problem of calculating and studying the nature of the 
excited states of the organic molecules, in particular of the 
molecule of formaldehyde.10 Actually, formaldehyde is an 
important prototype in studying the salient features of the 
carbonyl compounds and polyatomic molecules in 
general.10,14 Although the molecule of formaldehyde has 
already been studied in quite a few papers (see Ref. 1–14), 
its certain spectroscopic parameters have not yet been 
confirmed reliably till now, while other parameters have 
been obtained only theoretically and, unfortunately, have 
not yet been checked experimentally. First of all we mean 
the oscillator strengths of a large number of transitions. As 
for the Rydberg series, the intensity distributions appears to 
be extraordinary.12,13 Another characteristic of this 
spectrum is the lack of any band which could be associated 
with the π → π*–valence transition. Our results show that a 
transition exists to the state 1A1(π, π*) at a wavelength of 

1265 A°  with oscillator strength f = 0.08. This state is 
strongly affected by the interaction between the adjacent 
states 1A1(2b2npb2) and the π*–valence state (for more 

details see Ref. 2). Considerable attention is now devoted to 
the nonplanar excited states 1A2 and 3A2 of formaldehyde. 

Among their interesting salient features is the change in the 
nonplanar structure accompanying the excitation of the 
molecule to its singlet or triplet 1,3A2 states.

14 The states 
1A2 and 3A2 of formaldehyde molecule were considered 

previously in detail in connection with the most important 
question: whether the spin–polarization effects may lead to 
virtual violation of the well–known Hund rule. Thus, it 
was demonstrated that the spin–polarization effects were 
almost identical in both states, so that practically they did 
not affect the energy of splitting.10 Among the latest 
important studies devoted to H2CO is Ref. 14, which 

presents the results of calculation of several states in the  

approximation of configurational interaction, in particular, 
1A2 and 3A2, which arise in formaldehyde as a result of the 

low–lying n–π* excitation.  
This paper presents the results of calculation of several 

spectroscopic parameters, namely, the oscillator strengths of 
the dipole transitions in the vacuum UV range of molecular 
spectrum of formaldehyde, which improve the previously 
obtained experimental and theoretical data, in particular, 
new values have been obtained of the oscillator strengths of 
the transitions to the states 1A1(π–π*) and 1B1(σ–π*). 

Calculations were performed on the basis of the method of 
the motion equations,2,5,16 taking effective account of the 
most important polarization effects, including the effects 
determined by the so–called 2p–2h (two particles–two 
holes) interactions. In contrast, e.g., to Ref. 2, these effects 
have been accounted for following a scheme proposed and 
checked in Refs. 17–20. The choice of this calculaitonal 
method is explained below.  

The calculational scheme. The problems of calculating 
various spectroscopic characteristics of a molecule, in 
particular, the intensities of the bands in the 
photoelectronic spectra, which are known to be determined 
by the corresponding photoionization cross sections, the 
oscillator strengths, the intensities of transitions between 
the states of different multiplicity, and the intercombinative 
and the Rydberg electronic transitions, etc, are up–to–date 
and quite complicated problems.21 Until recently most of 
the studies of the electronic transitions in molecules had 
been mainly devoted to the transitions within the valence 
shell, while the Rydberg transitions were not considered in 
sufficient detail, due to a number of the well–known 
reasons. As a rule, such transitions take place in the vacuum 
UV range and cannot be adequately described on the basis 
of traditional a priori calculational methods using the 
virtual orbital bases. One of the first studies of the Rydberg 
transitions (aliphatic hydrocarbons were considered) yielded 
acceptable calculated results by expanding the orbital basis 
due to the shell with n = 2 for hydrogen and the shell with 
n = 3 for carbon. However, such an expansion of the basis 
demanded a considerable expense of computer time.21 
Meanwhile, to analyze more terms in the Rydberg series, 
the basic set must be expanded due to outermost shells, so 
that the nonempirical calculations become more and more 
difficult and cumbersome while the empirical evaluations of 
the integrals used in the semiempirical techniques appeared 
to be rather problematic.3,21 In such a situation an 
alternative is apparently seen in the method of the motion  
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equations, proposed in Refs. 2, 15, and 16, which makes it 
possible to calculate the transition momenta, the probabilities, 
the oscillator strengths, etc., directly, avoiding the problems 
associated with routine calculations (with some prescribed 
accuracy) of the wave functions and total energies of the 
molecular states. As to the application, the method has been 
successfully employed to calculate various spectroscopic 
characteristics of both the inorganic (e.g., N2, CO, etc.) and 

organic (e.g., C6H6, etc.) molecules.15,16 Recently it was not 

widely used probably because the characteristics of molecules, 
which could be calculated, were limited in number. However, 
the interest in the method has increased again, since it has 
been successfully used to calculate the oscillator strengths of 
heavy atoms as well as to describe a very important and fine 
effect of the parity nonconservation in atoms.22 As shown 
previously,15,16 to obtain an acceptable accuracy, rather 
limited orbital basis could be used, however, it results in the 
need to consider accurately such important correlation effects 
as the "continuum pressure", the energy dependence of the 
potential of the self–matched field, and the effects associated 
with taking account of the so–called 2p–2h interactions (two 
particles–two holes).23-26 Accounting for these effects by the 
standard methods (in the framework of the perturbation 
theory) drastically complicates the problem.17,27 To take into 
account the above–mentioned effects an efficient procedure 
was developed in Refs. 17–20, on the basis of the formalism of 
the density functional using the corresponding energy–
dependent exchange–correlation pseudopotentials. Their use in 
the scheme of the motion equations makes it possible 
adequately to take into account, for example, the 2p–2h 
interactions (see below) without increasing the volume of 
calculations and with acceptable accuracy of the obtained 
results. Such a modified approach has already been used for 
test computations of the spectrum of the excited states of the 
benzene molecule, for preliminary consideration of 
formaldehyde, and for other studies. It appeared to be quite 
effective,28 from the viewpoint of its economic efficiency and 
accuracy of calculations and comparison with the available 
reliable experimental data.13 Now we shall briefly consider the 
significant points of the method. According to Ref. 2, the 
operator producing the excited state ⏐λ> of the molecule with 
the ground state ⏐0>, i.e. ⏐λ> = Q

λ
+ ⏐0>, is an exact solution 

of the motion equation  
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where ω
λ
 is the transition frequency, the amplitudes Q

λ
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the coefficient of the matrix of the transition ⏐0> → ⏐λ>, 
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(the coefficients of matrices A, B, and D were described in 
detail in Refs. 2 and 16). These amplitudes determine the 
moment of transition M0λ:  
 

M0k = 2 ∑
m
γ

[Y*
mγ

(l) M
mγ

 + Z*
mγ

(l) M
mγ

] , (3) 

 

and the oscillator strength corresponding to the transition 
⏐0> – ⏐λ>  

f0λ = 
2
3 Gω

λ
 M 20λ , (4) 

 

Here G is the degeneration factor and M
mγ

 is the 

particle–hole coefficient M of the matrix. An acceptable 
accuracy is obtained in the framework of the method for a 
limited orbital basis, because the above mentioned 
correlation effects, in particular, the 2p–2h interactions, are 
considered adequately. An account of the 2p–2h coefficients 
in Q

λ
+ is equivalent to renormalization of the matrices in 

Eq. (2) to ω; according to Refs. 17–20 it results in a weight 
coefficient a(r) = [1 – Σ(r)]–1 entering into the matrix 
coefficients. Here  
 

Σ(r) = –0.254[0.328ρ1/3(r)+0.204ρ1/3(r)/(1+18.376ρ1/3(r)](5) 
 

(ρ is the electron density). In order to simplify the 
calculations without loss of accuracy, the coefficient a(r) 
may be replaced by a(0), in accordance with the procedure, 
which is well known and strictly founded in the theory of 
the atomic photoeffect and is based on the approximation of 
random phases with exchange.29 Below we present some 
results of calculations of the oscillator strengths 
corresponding to the important electronic dipole transitions 
in the formaldehyde molecule.  

Calculated results. The electronic configuration of the 
formaldehyde molecule in the ground state has the form  
 
1a2

1 2a
2
1 3a

2
1 4a

2
1 1b

2
2 5a

2
1 1b

2
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2
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The geometry of the molecule we choose for our 
calculations corresponds to the generally accepted 
experimental geometry of the ground state.12 In our 
calculations we employed the [3 s 2 p/1s] valence basis of the 
Gaussian (contracted) functions to which the diffuse Gaussian 
basis functions were added (see Ref. 2 for the details of this 
choice and for a comprehensive description of this basis). We 
only note here that the sought–after basis makes it possible 
adequately to describe the transitions in the molecule valence 
shell and as well as the transitions to the first terms of the 
Rydberg series. The presence of the Rydberg components in 
the basis is explained by the fact that it is impossible 
adequately to describe both the valence and the Rydberg 
configurations responsible for certain spectral characteristics of 
formaldehyde. Table I shows the calculated values of the 
oscillator strengths of the considered dipole transitions along 
with analogous data borrowed from Ref. 2 for comparison as 
well as with the recommended experimental values.2,12–14 The 
calculated value of the oscillator strength corresponding to the 
1A1 → 1B1(σ → π*) transition agrees fairly well with the value 

calculated in Ref. 2, and corresponds to the weak absorption 

at 1340–1430 A°  (8.7–9.4 eV). This is the only transition in 
the valence shell existing in the spectrum at wavelengths 

below 2000 A° . The most extraordinary characteristic of the 
spectrum of formaldehyde is the transition to 1A1(π–π*) which 

is experimentally observed neither in the electronic diffusion 
nor in the absorption spectra. The value of f we recommend 
for this transition is slightly less than the corresponding value 
given in Ref. 2. Note that the indicated state corresponds to 
the states of the valence type with certain Rydberg features 
because of interaction with the adjacent Rydberg states. The 
1B2(2 b23 pa1) and 1B2(2 b24 pa1) states should be mentioned 

among the Rydberg transitions: the oscillator strengths 
corresponding to the transitions to these states agree fairly 
well with the experimental data. Similarly the 1A1(n–3 pb2) 

state: the efficient account of the interaction with the  
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1A1(2 b2nd b2) states allows us to obtain f = 0.038 (the 

corresponding experimental value is f exp= 0.017). The value 
f exp corresponding to the transition to the state 1A1(2 b24 pb2) 

is not available, and we recommend f = 0.003. As for the 
transitions to the Rydberg states, which converge to the 
second ionization potential, namely, the states 1B1(π–3 s) and 
1B1(π–3 pa1), the values of the oscillator strengths obtained 

for them are somewhat less than those recommended in Ref. 2 
and they appear to be more accurate. Table II contains the 
data on excitation energies for the considered states obtained 
by various methods such as the multiconfiguration 
approximation, the present method, the method of the motion 
equations2,4,16 (with an account of the electron–hole effects 
following the technique described in Ref. 2) as well as the 
experimental values taken from Refs. 7 and 10–14. As can be 
seen from Table II, the wavelengths of the transitions 
considered in the present paper agree fairly well with 
experimental values. The values of the transition energies for 
the first five transitions are more accurate than the 
corresponding calculated values taken from Refs. 2 and 4. It 
should be noted that because of the rather limited possibilities 
to take into account the additional configurations, the 
transition energies calculated in the multiconfiguration 
approximation4 and given in Table II are in a somewhat worse 
agreement with the experiment, than, say, the presently 
obtained values. Recent calculation based on the method of 
superposed configurations14 permitted one to calculate the 
energies of splitting for the state 1,3A2(n–π*) (singlet–triplet 

splitting), to account accurately enough for the configuration 
interaction, and to reproduce the experimental value of this 
energy to an accuracy δ g 0.001 a.u., namely, ΔE = 0.012 a.u. 
(corresponding experimental value is ΔE = 0.011 a.u.). For 
comparison, we also give the energies of splitting calculated in 
Ref. 2: ΔE = 0.021 a.u., and those obtained in the present 
study: ΔE = 0.019 a.u. One of the reasons for such situation 
lies in the different manner in which the correlation effects 
influence the singlet and the triplet terms. As our calculations 
show, it appears to be extremely important to take account of 
the correlation effects, particularly, the energy dependence of 
the potential of the self–matched field associated with the so–
called 2p––2h interactions (see above), for accurate 
calculation of the transition wavelengths. Accounting for the 
2p–2h effects improves the agreement between the calculated 
and experimental transition energies by 15–30%. According to 
Ref. 4, since the oscillator strength is proportional to the 
transition frequency and, in addition, the effects associated 
with the 2p–2h interactions lead to a re–normalization of the 
partially hole matrix coefficient, an account of the correlation 
effects (the formalism of the method of the motion equations 
deals with the partially hole correlations) appears to be very 
important for obtaining the calculated oscillator strengths of 
the transitions which agree very well with experimental 
values. Accounting for the sought–after correlation effects 
improves the agreement between the calculated and 
experimental values of the oscillator strengths by 
approximately 10–25% (in particular, for the experimentally 
investigated transitions). Although the agreement between the 
calculated oscillator strength and the corresponding 
experimental value is very good (in particular, for the  
1B2 n – 3 pa1 and 1B2 n – 4 pa1 transitions) for several 

transitions, e.g. , for the 1B2 n – 3 s and 1A1 n – 3 pb2 

transitions, the values of f calculated in our paper agree worse 
with the experimental data. One of the factors of this 
circumstance is connected with the procedure one uses to take 
into account the 2p–2h coefficients in the transition matrix 
Q

λ
. The point is that the coefficient a(r) given by Eq. (5)  

should be present in exact calculations of the matrix 
coefficients. It is replaced by the value a(0) in our 
calculations performed according to the well–known 
procedure based on the theory of the atomic photoeffect 
(see above). Note in conclusion that the authors of 
Ref. 14 calculated the energy differences ΔE between the 
singlet and the triplet 1,3A2(nπ*) states of H2CO in the 

approximation of configurational interaction, as well as 
various contributions to ΔE (the energies of electron–
nucleus and electron–electron interactions, etc.) as 
functions of the distance between the nuclei of carbon 
and oxygen (RCO). Not going into any details of the 

behavior of sought–after contributions ΔE, we only 
comment here that the dependence ΔE(RCO) calculated by 

our method, practically completely coincides with 
ΔE(RCO) taken from Ref. 14 (see also Ref. 30), and only 

has worse accuracy (see the results for ΔE, given above).  
 

TABLE I. Oscillator strengths of dipole transitions in the 
formaldehyde molecule.  
 

 
State 

 
Transition 

f 
Ref. 2 

F 
(our results) 

f exp 
Refs. 2,12, 

and 13 
1A1 π–π* 0.10 0.08  – 

1B1 σ–π* 0.002 0.0016 – 

1B2 
n–3s 0.020 0.017  0.028 

1B1 π–3s 0.060 0.046  – 

1B1 π–3pa1 0.020 0.017  – 

1B2 
n–3pa1 0.040 0.034  0.032 

1A1 
n–3pb2 0.050 0.038  0.017 

1A1 
n–4pb2 0.004 0.003  – 

1B2 
n–4pa1 0.040 0.034  0.032 

 
TABLE II. Excitation energies (vertical) in the 
formaldehyde molecule (see text).  

 

 
State 

 
Transition

ΔE 
Ref. 2

ΔE 
Ref. 4 

ΔE 
 (our results) 

ΔEexp 
Refs. 7,10, 

and 14 
1A1 π–π* 10.10 9.90 9.80 – 

1B1 σ–π* 9.19 9.03 9.01 9.00 

1B2 
n–3s 7.28 7.38 7.13 7.08 

1B1 π–3s 11.20 – 10.98 – 

1B1 π–3pa1 12.20 – 11.96 – 

1B2 
n–3pa1 8.12 8.39 7.96 8.14 

1A1 
n–3pb2 8.15 8.11 7.90 7.97 

1A1 
n–4pb2 9.40 – 9.21 9.58 

1B2 
n–4pa1 9.55 – 9.42 9.63 
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