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APPROXIMATION OF K–DEPENDENCE OF THE (HF)2 DIMER  

ROTATIONAL ENERGY 
 

S.V. Korzilov, V.I. Staricov, and Vl.G. Tyuterev 
 

The dependence of the rotational energy F(K) of the (HF)2 dimer on the rotational 

quantum number K is investigated. This investigation is based on the simultaneous 
analysis of high–amplitude bending vibration and molecular rotation. The analytical 
representations of the rotational energy F(K) are obtained, which can be used for 
retrieval of the numerical values of the function F(K) by fitting the experimental data 
for the hypothetical level J = 0. As compared to the polinomial and fractional–rational 
representation of dependences of the rotational energy F(K) on the quantum number K, 
our models provide the better account for the experimental data and posess better 
extrapolation properties. 

 
The (HF)2 dimers are classified among as nonrigid 

molecules with strong vibrational–rotational interaction 
associated with high–amplitude bending vibrations of a 
molecule. This class of molecules also incorporates a large 
number of the H2X molecules among them, e.g., the H2O 

molecule, which in many respects determines radiation 
absorption in the atmosphere in the visible and infrared. A 
variety of both fundamental and purely calculational problems 
of high–resolution spectroscopy in the study of spectra of such 
molecules arise from nonrigidity effects of centrifugal 
distortion. The potential function of the (HF)2 molecule 

related to those atomic motions which retain the molecule flat 
(the trans–path is considered) has a low barrier relative to an 
intermediate configuration with the C2h–symmetry (about 

330 cm–1, Ref. 1) that allows the molecule to convert from 
one bending configuration to the other equivalent to it. Such 
an inversive motion results in the inversion–rotational 
molecular spectrum whose experimental study was started by 
Dyke et al.2 (references to other experimental works can be 
found in Ref. 3). The group–theoretical analysis of 
vibrational–rotational motion of the (HF)2 dimer is given in 

Refs. 2, 4, and 5. 
From theoretical point of view nonrigidity of molecule 

leads to the problem of correct consideration of strong 
bending–rotational interaction and as a result, to the problem 
of searching for the dependence of rotational molecular energy 
on rotational quantum numbers adequately describing the 
experimental data. It is well known that the high–amplitude 
bending vibration of triatomic nonrigid molecules H2X leads 

to divergence of the polinomial representation of the effective 
rotational Hamiltonian Hw (see, e.g., Refs. 6 and 7). The 

subsequences which incorporate powers of the operator J2
z (Z) 

is the axis of linearization of the molecule) have the worst 
convergence of the Hw expansion. In the basis of rotational 

wave functions ⏐J, K> the operator J2
z is diagonal, i.e.,  

J2
z⏐J, K > = K2⏐J, K>. A diagonal part of the Hamiltonian 

Hw in the standard representation corresponds to the function  
 

<J, K⏐HW⏐J, K> = FN(K) = ∑
i=0

N

 Ci K
2i (1) 

 

with J–dependent constants Ci. One of the evident 

manifistantions of nonrigidity consists in the fact that the 
achievement of high accuracy of describing the experimental 

data requires a large number of adjustable parameters Ci in 

Eq. (1). These parameters are purely phenomenological and 
do not allow one to calculate highly excited rotational 
molecular energies with an acceptable accuracy. 

This is manifested especially strongly with the (HF2) 

dimers. The relation for the energy of inversion–rotational 
levels employed for fitting the inversion–rotational 
transitions can be written in the form3 
 

E
K

V =DV + FV(K) + B
–

 J(J + 1) – 

 

– D J
V

, k[ ]J(J + 1) 2 + HJ
V[ ]J(J + 1) 3 + ... 

 

± { }1
4 (B – C)VJ(J + 1) + d2

V[ ]J(J + 1) 2 + ...  . (2) 

 
The constant ΔV determines the amount of the inversion 

doubling of vibrational energy levels (V = 0, 1, 2, ...), the 
function F(K) determines the dimer rotational energy as a 
function of the quantum number K, the terms incorporating 

the constants 
–
B, D, ... together with F(K) describe rotational 

energy of nonrigid symmetric top, and finally the terms in 
braces describe the correction for the energy associated with 
the molecular asymmetry. The function F(K) describing a 
centrifugal distortion in the symmetric–top molecule 
approximation has the conventional form 
 

F(K) = (A — B) K
—

 2 — DK K 4 + HK K 6 + ... . (3) 
 

Hereafter, the superscript V is omitted for brevity.  
Lafferty et al.3 showed that to ensure an experimental 

accuracy of retrieval of the inversion–rotational transition 
frequences entering in the function F(K) by fitting it is 
necessary to employ as many number of the adjustable 
parameters A, Dk, ... as the number of the functions F(K) 

known from the experiment. This means that the functional 
representation of Eq. (3) is not consistent with real behavior 
of the experimental data. By virtue of this fact the 
experimental data were fitted individually for each K–band 
(K = 0, 1, and 2) so that in the energy EK given by Eq. (2) 

there were not the parameters of the function F(K) which 
were retrieved by solving the inverse spectroscopic problem, 
but rather the numerical values of the function F(K) for the 
given K. Series (3) cannot apparently be employed for  
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predicting rotational energies (or transition frequencies) with 
quantum numbers K > Kmax, where Kmax is the maximum 

value of the quantum number for experimental energy levels 
(or transition frequencies) used for the determination of the 
parameters of the function F(K). Figure 1shows the values of 
the function FN(K) of the (HF)2 dimer calculated from 

Eq. (1) with K > N represented for the vibrational state 
V = 1 (the upper inversion component of the ground 
vibrational state) and J = 0. In the functions FN(K) the value 

N determines the number of the adjustable parameters 
obtained by fitting the first N values of the function F(K). 
The experimental (more exactly, obtained by fitting the 
experimental data) values of the function F(K) are joined by a 
solid line. 

 

 
 

FIG. 1. Experimental (solid line) and calculated (dashed 
lines) values of the ground–state rotational energy (the 
component V = 1) of the (HF)2 dimer (for the hypothetical 

level J = 0). Dashed lines correspond to the results of 
calculation with the polynomial representation of FN(K) 

incorporating the N adjustable parameters determined by 
fitting the N experimental data. Curve 1 corresponds to the 
results of calculation with two–parametric function (11). 
 

In Ref. 3 the Pade representation of the energy EK was used 

in addition to conventional representations (2) and (3). 
Though the number of the adjustable parameters in fitting 
the experimental data was the same as for the Taylor 
representation of Eqs. (2) and (3) for EK, the quality of 

predicting highly excited energy levels, as was noted in 
Ref. 3, was substantially improved. 

This paper is devoted to approximation of K–
dependence of the (HF)2 dimer rotational energy, i.e., 

search for an optimal analytical representation of the F(K) 
function whose experimental values (for a hypothetical level 
J = 0) have been given in Refs. 1 and 3. 

METHOD OF INVESTIGATION 
 
Method for studying the rotational energy of nonrigid 

molecule as a function of the quantum number K is based 
on simultaneous consideration of high–amplitude vibration 
and rotation in Schrodinger's equation  
 

⎩
⎨
⎧

⎭
⎬
⎫

 — μ 
∂2

∂ρ2 + V0(ρ) + A
~
(ρ) K2 Ψ = h(K)Ψ , (4) 

 

where ρ is the coordinate of high–amplitude bending vibration 
for (HF)2 determined in Ref. 1, V0(ρ) is the anharmonic 

potential function corresponding to a given vibration and 
assuming a rigorous solution of Eq. (4) for K = 0. The 

function A~(ρ) models the behavior of the function A(ρ) as a 
function of variation in the molecular inertia tensor along the 
axis of linearity (an explicit form of this function can be 
calculated using the formulas given in Ref. 1). The method 
was proposed for the description of the rotational energy of 
the nonrigid H2X molecules in Refs. 8–11. Equation (4) 

represents the model analog of a more complete equation 
which was solved, e.g., in Refs. 1 and 12 using the numerical 
methods. Is this case the function h(K) provides a point–by–
point values of rotational energy of molecule (J = 0) for each K. 

Is should be noted that if the function A(ρ) is expanded 
in a quickly convergent series in terms of the coordinate ρ then 
such an expansion also results in convergence of polynomial 
representation of F(K). This is not the case for the (HF)2 

dimer. The calculated values of the function A(ρ) are given in 
Ref. 1. They are successfully approximated by the function 
(see Table I): 
 

A
~
(ρ) = { }A

~
(ρ)  + { }ΔA

~
(ρ)  = 

⎩
⎨
⎧

⎭
⎬
⎫

a0 + 
a1

ρ2  + 
⎩
⎨
⎧

⎭
⎬
⎫a2

ρ  (5) 

 

with the parameters ai (i = 0, 1, 2). It can be seen from 

Eq. (5) that as ρ → 0 (when ρ = 0 the molecule is linear and 
has finite barrier with respect to linearity in the potential 

V0(ρ)) the function A
∼
(ρ) increases without limit, i.e.,  

A
∼
(ρ) → 8, so that the contribution of A

∼
(ρ) K2 associated with 

the rotation of molecule and variation in the inertia tensor 
becomes of primary importance in Eq. (4). 

 

TABLE I.  The values of the function A(p) (see Ref. 1) and 

its model representations A
∼

0(ρ) = a0 + a1/ρ2 and  

A
∼
(ρ) = A0(ρ) + a2/ρ (cm–1) * 

 

ρ  (°) A(ρ) Ref. 1 
A
∼

0(ρ) A
∼
(ρ) 

 0.1 
 1.0 
 5.0 
10.0 
20.0 
34.4 
50.0 
70.0 
90.0 

1417673.8 
14319.6 

604.9 
165.2 
52.0 
26.2 
19.2 
15.9 
14.8 

1417673.8 
14210.6 

601.3 
176.0 
69.7 
46.2 
39.9 
37.1 
36.0 

1417672.7 
14319.2 

605.9 
166.4 
52.8 
26.3 
18.6 
15.0 
13.4 

 

* a0 = 10.04 cm–1, a1 = 4.313953 cm–1
⋅ rad2, and 

a2 = 2.57077272 cm–1
⋅ rad. 

 

The potential function V0(ρ) of a molecule (Vmin in 

the notation of Ref. 1), ab initio values of which are given 
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in Ref. 1, can be fitted by different functions assuming the 
solution of Eq. (4) for K = 0 (see, e.g., Ref. 10). It is 
convenient to choose this function in the form  
 

V0(r) = b0 + b1 /ρ2 + b2 ρ
2 , (6) 

 

which assumes the solution of Eq. (4) (simultaneously with 

the function A
∼

0(ρ)) for K ≠ 0 and ensures approximately the 

same quality of retrieval of ab initio values of Vmin as of 

the other functions V0(ρ) from Ref. 10. 
 

MODEL REPRESENTATIONS OF ROTATIONAL  
ENERGY OF THE (HF)

2
 DIMER 

 
Substitution of V0(ρ) given by Eq. (6) and the function 

A~(ρ) from Eq. (5) into Eq. (4) (contribution of ΔA~(ρ)K2 is 
taken outside it into the perturbation) yields9,11,13 

 

h(K) = b2μ( )4n + 2 + 1 + 4 (b1 + a1 K
2)/μ  + a0K

2. (7) 

 

To determine the molecular rotational energy scaled to 
the energy with K = 0 it is convenient to employ the function 
 

G(K) = μ~( )1 + α1K
2 — 1  , (8) 

 

where 
 

μ~ = 
1
4 ω 1 + 4b1 /μ , α1 = 

4a1

μ + 4b1
 , and ω = 4 b2μ . (9) 

 

In these designations for vibrational state n = 0 (it is 
degenerated and incorporates two components V = 0 and 
V = 1) we have  
 

h(K) — h(0) = G(K) + a0K
2 . (10) 

 

Since for K .1 the asymptotic is G2(K) ∼ CK2 

(hereafter C are arbitrary constants), we can represent the 
function F(K), using Eq. (10) for consistency, in the form  

 

F(K) = G(K) + g2G
2(K) , (11) 

 

where g2 is the adjustable parameter. The calculated behavior 

of the function F(K) given by Eq. (11) with the two 
adjustable parameters α1 and g2 retrieved from the values of 

the functions F(K = 1) and F(K = 2) is shown in Fig. 1. The 

value μ~ h ω/4 for ω = 160 cm–1 (see Ref. 1) was used for the 

parameter μ~. 
The function G(K) determined by formula (8) has the 

form of a generating function being introduced in Refs. 9 and 
11 for describing the energies of the rotational levels of the 
H2O molecule. The expansion of this function in the Taylor 

series in terms of α1K
2 gives polynomial representation (1) 

which is conventional for F(K). The values of the parameters 
Ci of this representation are close in values to those obtained 

from fitting the experimental data. In contrast to the H2O 

molecule, in the function G(K) for the (HF)2 dimer the 

parameter α1 h 2.6 > 1. It means that Taylor representation 

(1) for G(K) in the case of the (HF)2 dimer is divergent for 

any K ≠ 0. By neglecting the first two terms in the radicand 
(for K ≠ 0) of h(K) given by Eq. (7) we obtain the 
approximate relation for h(K)  

h(K) = C0 + C1|K| + C2 K
2 . (12) 

 

For the correction Δh1(K), associated with taking out the 

term ΔA~(ρ)K2 into the perturbation for the ground state 
(n = 0), we may obtain the relation  
 

Δh1(K) = <Ψ0⏐ΔA(ρ) K2⏐Ψ0> = a2⎝
⎛

⎠
⎞b2

μ

1/4

 
Ã (2S + 1)

Ã ( )2S + 
3
2

 K2 , 

where 
 

S = 
1
4 { }–1 + 1 + 4 (b1 + a1K

2)/μ  , 

 

and Γ(...) is the gamma–function. The use of asymptotic 
representation for the Γ–function and the approximate 
representation for S | C0 + C1⏐K⏐, yelds for the correction 

Δh1(K) the relation  
 

Δh1(K) g 
C2K

2

( )1 + C3 ⏐K⏐ 1/2
 . (13) 

 

Taking into account this correction for h(K) in 
Eq. (12), we can represent the function F(K) in the form 

F(K) = h(K) + Δh1(K) =C1 ⏐K⏐ + 
C2K

2

( )1 + C3 ⏐K⏐ 1/2
 . (14) 

 

It should be noted that the potential function  

V~ 0(ρ) = b0 + b1/ρ + b2/ρ2 also assumes an analytical 

representation10 for h(K) and results in the other form of 
G(K). The retrieval of vibrational frequencies by employing 

the function V~ 0(ρ) of the above type is worse than that with 

the potential function V0(ρ) given by Eq. (6), therefore, the 

solution h(K) obtained from Eq. (4) with V~ 0(ρ) is not 

considered in the paper. 
 

A TWO–DIMENSIONAL CASE 
 
Let us show briefly the possibility of considering the 

strong vibrational–rotational interaction in the (HF)2 dimer 

for the case of the two vibrational coordinates. The 
coordinate ρ = (θ1 + θ2)/2 is defined in Ref. 1 in the form 

of a half–sum of two coordinates θ1 and θ2 specifying the 

changes of the angles between the bonds HF and the line 
joining the centroids of the HF molecules. In these variables 
Eq. (4) takes the form  
 

⎩
⎨
⎧–μ 

∂2

∂θ1
2 –μ 

∂2

∂θ2
2 + V0 (θ1, θ2) + 

⎭
⎬
⎫A~

 
(θ1, 

θ2) K
2 Ψ = h(K) Ψ.(15) 

 

The potential function 
 
V0 (θ1, θ2) = b (θ1

2 + θ2
2) 

 

and the model representation  
 

A~ (θ1, θ2) = a0 + 
a1

θ1
2 + θ2

2 

 

assumes the solution of Eq. (15) in the form15 
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h(K) = ω (⏐M(K)⏐ + 1 + 2np ), (16) 
 

where M2(K) = M2 + (a1/μ) K2, M= 0, ±1, ±2, ..., and np is 

the principal vibrational quantum number. For the ground 
state np = 0 and M = 0, and from Eq. (16) it follows 

 
h(K) = C0 + C1⏐K⏐ + C2 K

2 

 
which coincides with Eq. (12). It should be noted that 
the representation V0(θ1, θ2) is approximate and assumes 

the presence of a minimum in the potential function of 
linear molecule. 

 

SOLUTION OF INVERSE PROBLEMS 
 

The functions F(K) given by Eqs. (11), (12), and (14) 
were employed for fitting the experimental values of F(K) 
given in Refs. 1 and 3 (for the hypothetical level J = 0). The 
results of solution of inverse problems are given in Table II 
along with their comparison with the results obtained with 
polynomial representation (1) and some fraction–rational 
forms of F(K). It can be clearly seen that nonpolynomial 
representations (11) and (14) of F(K) substantially improve 
the quality of retrieval and prediction of the molecular 
vibrational energy in comparison with the conventional 
power–law dependence (1) and with the fraction–rational 
dependences of F(K). 

 

TABLE II. Comparison between the quality of retrieval and prediction of the rotational energy F(K) of the (HF)2 

molecule (for hypothetical level J = 0) for different representations of F(K) (V = 1, cm–1) (against the criterion 
δF(K) = max⏐Fcalc(K) – Fexp(K)⏐).  

 

 
Representation of F(K)  

 
L 

δF(K), M = 3 
K ≤ 3 

Prediction of F(4)
F(4)exp = 386.7 

δF(K), M = 4 
K ≤ 4 

 
Prediction of F(5) 

F(K) = C2 K 
2 + C4 K 

4 
 2 3.9 339.2 6.2 518.8 

F(K) = C1⏐K⏐ + C2 K 
2
 2 1.4 398.8 3.5 581.1 

F(K) = 
C1 K 

2

1 + C2 K 
2 

2 3.4 358.7 5.5 535.8 

F(K) = G + g2G 
2
 2 0.36 388.6 0.5 571.0 

F(K) = C2 K 
2 + C4 K 

4 + C6 K 
6
 3 0.0 604.6 3.1 667.8 

F(K) = C1⏐K⏐ + C2 K 
2 + C3 K 

3
 3 0.0 382.5 0.4 560.5 

F(K) = 
C1K 

2

1 + C2 K 
2 + C3 K 

4 

3 0.0 515.9 2.4 627.7 

F(K) = 
C1K

2 + C2K
4

1 + C3K
2  

3 0.0 395.5 1.4 576.4 

F(K) = 
C1⏐K⏐ + C2 K 

2

(1 + C3 K)1/2  

3 0.0 385.8 0.1 564.3 

F(K) = G + g2G 
2 + g3G 

3 3 0.0 393.5 0.4 568.7 

F(K) = 
G + C2 K 

2

(1 + C3⏐K⏐1/2)
 

3 0.0 388.1 0.1 565.7 

 

Note: L is the number of adjustable parameters, M is the number of experimental values of F(K) according 
to Refs. 1 and 3. F(K) was predicted with the use of the parameters C obtained by fitting the experimental 
data on F(0), F(1), ..., F(K – 1). The δF(K) values are underlined for the best two– and three–parametric 
functions. 

 

Further study will be based on the use of the determined 
functions F(K) for describing the experimental inversion–
rotational transition frequencies. 
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