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A problem of determining the atmospheric contaminant concentrations using a 
DIAL technique is considered in this paper. An analysis of a complex multidimentional 
nonlinear system allows one to make its serial–parallel decomposition into simpler 
components and for each of them to construct an optimal reduction transformation 
chain from a linear to a series of simple nonlinear and finally to a spatially invariant 
measuring system. 

 
INTRODUCTION 

 

The problem of interpreting results of lidar 
measurements is one of the most important problems in the 
atmospheric studies. It is considered to be solved when one 
obtains from lidar sensing data sufficiently accurate 
estimates of the atmospheric parameters of interest like, 
e.g., distributions of densities or concentrations of 
atmospheric contaminants along the sounding path.1,2,3 

In practice, of complex measurements like, e.g., lidar 
sensing of the atmosphere, direct interpretation of 
measurement results is too problematic. However, if a 
mathematical model relating the properties of an object 
under study and measurement results can be constructed, a 
whole spectrum of processing techniques can be suggested 
that could fit the interpretation task.4 

As a rule, lidar measurements follow one and the same 
routine: a laser pulse is sent into the atmosphere (to reach a 
remote topographic target), and backscattered radiation is 
detected. Then the atmospheric parameters sought 
(concentrations or size spectrum of contaminants), should be 
estimated using an optimal technique for processing the 
received signals (spectra). 

The present paper discusses the task of designing a 
computerized measuring system1 of the highest possible 
sensitivity or resolution (CMS SHR) for a lidar 
measurement system (MS) available. Generally speaking a 
design of an optimal computational component of the CMS 
(an optimal processing algorithm) needs for an accurate 
information about the model of measurements.  

A lidar measurement system is in general a complex 
nonlinear system of large dimensionality, admitting 
however, a serial–parallel decomposition into simple 
components; a linear one, a series of simple parallel 
nonlinear ones, and a multidimensional linear spatially 
invariant MS for each component an optimal computational 
algorithm can be constructed.4,5 The entire processing 
algorithm (the computational component of the CMS) is 
then presented as a serial–sequential composition of 
corresponding algorithms. 

The computational component of such a lidar CMS 
performs a complex optimal transformation of a signal, 
adequately accounting for the spectral intensity distribution 
of a laser emission (i.e., for its nonmonochromaticity), for 
standard absorption spectra of different pollutants, and for 
a priori information about pollutants or the particle size 
spectra that would allow the final estimation of the sought 
parameters to be made. 

 
 

THE LIDAR MEASUREMENT SYSTEM 
 
In a long path absorption lidar measurement 

arrangement, a laser pulse is sent to a remote topographic 
target in the atmosphere and a portion of the laser pulse 
power reflected backward by the target is detected. The 
measurement algorithm can be given in the following form: 
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where ξ(ν

ο
) is the measured power of a spectrum within 

some frequency interval; ν
ο
 is the coordinate in the laser 

emission tuning range, (note that the measured spectrum 
has the dimensionality of K , and k pollutants affect the 
measurement result), a(ν, ν

ο
) is the spectral characteristic of 

the output laser radiation at the frequency ν
ο
 (it is usually 

assumed Gaussian, with the half–width γ
λ
); B is the factor 

depending on the area of the receiving optics, on the reflection 
coefficient of a topographic target, on the efficiency of the 
receiving system (i.e., on its optical losses), and on the volume 
losses along the sounding path, i.e., on R–2; η is the noise; k 
is the number of absorbing components in the atmosphere; Ni 

is the concentration of the ith component; R is the path 
length; σi(ν) is the function describing the absorption by the 

ith component (its absorption cross section), which is usually 
given in the form of a linear superposition of individual 
absorption lines of a fixed shape, as 
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where mi is the number of absorption lines in the ith 

standard spectrum; S
0j
(i), ν

0j
(i), and γ

0j
(i), are the intensity, 

central frequency, and half–width of the ith line of the jth 
component, respectively. 
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FIG. 1. 

 
Since the measurement system remains spatially 

invariant (it is invariant with respect to the frequency shift) 
measurement scheme (1) may be described within the above 
problem, as follows2: 
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Here a(ν – ν

0
) describes the line shape, since the laser 

tuned to the frequency ν
0
 emits radiation in a certain 

frequency interval following the function a(ν – ν
0
); I(ν) is 

the spectral power of laser radiation. 
 

SERIAL–PARALLEL DECOMPOSITION OF THE 

MEASURING SYSTEM  

 
Scheme of measurements (2) aimed at determination of 

number densities of absorbing contaminants by a differential 
absorption technique is a nonlinear measuring algorithm of 
large dimensionality, and therefore the reconstruction of the 
initial signal from data of measurements is not a trivial 
problem. 

To solve this problem let us present the lidar 
measurement procedure as a sequence of three 
"mathematical" measurements. The linear measurement 1 is 
a transformation of the vector of concentrations 
N = (N

1
, ..., Nk)* of dimensionality k to a multi–

dimensional signal S(ν) = 2R∑
i=1

k

 Niσi(ν) which is the resulting 

spectrum, either the absorption or the transmission one. 
The measurement 2 is the decomposition into K 

nonlinear one–dimensional measurements  
g(ν) = I(ν)exp(–S(ν)), where g(ν) is the intensity of 
radiation which would be detected at a frequency 
provided that the radiation is purely monochromatic with 
the intensity I(ν). The frequency dependence of the 
receiving channel B = const. 

Measurement 3 is the spatially invariant 
measurement system in which a multidimensional signal  

ξ(ν
0
) = ∫a(ν – ν

0
)g(ν)dν is obtained. The laser tuned to the 

frequency ν
0
, in fact emits the radiation within a certain 

frequency band, described by the function a(ν – ν
0
). 

Thus, the total measurement scheme may be 
represented as a series of three "mathematical" 
measurements. 

 
SYNTHESIZING THE MEASURING–

COMPUTATIONAL SYSTEM 
 
Mathematically the problem of interpreting 

experimental data involves obtaining an estimate N of  

concentrations from measurement results ξ(ν
0
), i.e., it is the 

problem on constructing an algorithm, which would 
optimally transform ξ(ν) into the estimate N and which 
adequately accounts for the measurement errors. It should 
be especially noted that this algorithm theoretically 
guarantees certain error of reduction (i.e., an error in 
determining N). 

The reduction problem is solved step by step. At the first 
step g is optimally retrieved from the measurement result ξ 
and all specific features of the 3–rd measurement, i.e., the 
scanning nature of measurements and their invariance with 
respect to the frequency shift are accounted for.5 

At the second stage the components S are optimally 
retrieved in parallel from all of the g components. At the 
third stage the vector of concentrations N is also optimally 
retrieved from S. 

Since ξ is known with an error that has certain 
stochastic characteristics, g is optimally retrieved to a 
certain controllable error, the estimates of S and, 
consequently, of N, will also be obtained with some 
controllable error. 

 

 
 

FIG. 2.  
 
Thus, the complete measurement and reduction schemes 

will have the structure shown in Fig. 2. The scheme involves 
only two types of measurements: the linear and the simple 
nonlinear (exponential). 

 
A LINEAR MEASURING SYSTEM 

 
Let a measurement be described by a linear stochastic 

measurement scheme with an additive noise.4 
 

ζ = Az + μ, 
 

where z is a random vector with the known covariance 
operator F; vectors μ and ζ are the random error with a zero 
mean value and the correlation operator ∑ and the 
measurement result, respectively; and, A is the linear 
operator. Let the vector Uz (U is the linear operator) is 
estimated using the transformation R (the reduction 
operator4). The quality of the operator R is usually 
described by the rms error of the estimate 

 

h(R, A) = E ⎢⎢Rζ – Uz⎢⎢2 . 
 

It is natural in this case that the operator RA, such as  
 

h(RA, A) = min{h(R, A) ⏐R: R
~
 → U} , 

 

is optimal. 
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Then the solution of the problem of reduction has the form:  
 

RA = UFA*(AFA* + Σ)–1,  
 

h(R
A
, A) = tr(UFU* – UFA*(AFA* + Σ)–1AFU*) .  

 

For the reduction 1 this means that 
 

g = Rξ , Σg = UGU* – UGA*(AGA* + Σ)–1AGU*, and Σg = Σ. 
 

As to the reduction 3, its solution is constructed in a similar way. 
 

A NONLINEAR MEASURING SYSTEM 
 

Let us consider a nonlinear measurement scheme6 
 

ζ = a(z) + μ . 
 

The task of reduction is then formulated as follows. 
First such a reduction transformation r is constructed that 
minimizes the rms error 

 

h = E ⎢⎢r(ζ) – U(z)⎢⎢2 → min . 
 

In our case an individual measurement is simple 
(contains an exponential dependence) and an analytical 
solution may be constructed from it. Indeed, let us consider 
the measurement scheme: 

 
 

ζ = exp(–z) + μ . 
 

If one assumes that z is uniformly distributed over the 
interval [0, z

max
] (what agrees with the natural situation), and 

the noise μ is uniformly distributed over the interval [–δ, δ], 
then r(ζ) will be the sought–after reduction transformation 
(see Fig. 3.). Such a measurement scheme is used in the 
reduction 2. 

 
CONCLUSION 

 
The described concept has been developed for some 

problems of lidar sensing (e.g., on determination of 
concentrations of atmospheric pollutants using a DIAL 
technique). The construction of a measuring and 
computational system, that is synthesizing an optimal 

algorithm for processing lidar measurement data makes it 
possible to calculate the parameters of spectral lines from 
tan experimentally measured spectrum on a real time scale 
and at a controlled level of uncertainty. 

The principles of serial–parallel decomposition of the 
described–above measurement systems may be used to solve 
the problems of analysis and interpretation of experimental 
data in various problems of lidar sensing. 

 

 
 

FIG. 3.  
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